Answer:
Workdone = 1960 Joules.
Explanation:
Given the following data;
Mass = 5kg
Force = 49N
Height (distance) = 40m
To find the workdone;
Workdone = force * distance
Substituting into the equation, we have;
Workdone = 49*40
Workdone = 1960 Joules.
Therefore, the amount of work done on the bowling ball to lift it is 1960 Joules.
Answer:
Do neither of these things ( c )
Explanation:
For length contraction : Is calculated considering the observer moving at a speed that is relative the object at rest applying this formula
L = (l)
where l = Measured distance from object at rest, L = contracted measured in relation to the observer , v = speed of clock , c = speed of light
you will do neither of these things because before you can make such decisions who have to view the object in this case yourself from a different frame from where you are currently are, if not your length and width will not change hence you can't make such conclusions/decisions .
Yes it is. Uh huh, uh huh, shore enuff. Mmm hmm. Yeah yeah yeah. Yah Mon ! Indubitably.
Answer:
Explanation:
According to <u>Coulomb's Law:</u>
<em>"The electrostatic force between two point charges and is proportional to the product of the charges and inversely proportional to the square of the distance that separates them, and has the direction of the line that joins them".</em>
<em />
Mathematically this law is written as:
Where:
is the electrostatic force
is the Coulomb's constant
and are the electric charges
is the separation distance between the charges
Solving:
The wavelength of a microwave of 3 x 10^9 Hz frequency is 0.1 m.
The wavelength of a microwave of 3 x 10^9 Hz frequency is calculated using the equation λ = c/f, where λ is the wavelength, c is the speed of light, and f is the frequency.
The speed of light is approximately 3 x 10^8 m/s. Therefore, the wavelength of a microwave of 3 x 10^9 Hz frequency can be calculated as follows:
λ = 3 x 10^8 m/s/3 x 10^9 Hz
= 0.1 m.
Therefore,the wavelength of a microwave of 3 x 10^9 Hz frequency is 0.1 m.
Microwaves are electromagnetic waves that have a frequency between 300 MHz to 300 GHz and a wavelength from 1 mm to 1 m. Microwaves have a variety of uses, including communications, radar, and cooking. Microwave radiation is absorbed by water, fats, and sugars, which is why it is used for cooking.
The frequency of a microwave is usually expressed in megahertz (MHz) or gigahertz (GHz). One megahertz is equal to one million hertz and one gigahertz is equal to one billion hertz. The frequency of a microwave determines its wavelength; the higher the frequency, the shorter the wavelength.
Learn more about electromagnetic waves at :brainly.com/question/3101711
#SPJ4