The empirical formula gives the relative ratio of atoms in each element. Therefore, it simplifies the whole numbers. For example C2H6 can be reduced to CH3 because they share the greatest common factor (2). The answer to this question would be #1. C4H10 can be reduced to C2H5 because 4 and 10 are both divisible by 2. C2H5 can not be reduced any further. All of the other options do not have a greatest common factor making them a empirical formula.
The coefficients next to the symbols of entities indicate the number of moles of a substance produced or used in the chemical reaction.
Answer:
10 kg of ice will require more energy than the released when 1 kg of water is frozen because the heat of phase transition increases as the mass increases.
Explanation:
Hello!
In this case, since the melting phase transition occurs when the solid goes to liquid and the freezing one when the liquid goes to solid, we can infer that melting is a process which requires energy to separate the molecules and freezing is a process that releases energy to gather the molecules.
Moreover, since the required energy to melt 1 g of ice is 334 J and the released energy when 1 g of water is frozen to ice is the same 334 J, if we want to melt 10 kg of ice, a higher amount of energy well be required in comparison to the released energy when 1 kg of water freezes, which is about 334000 J for the melting of those 10 kg of ice and only 334 J for the freezing of that 1 kg of water.
Best regards!
The answer to the question
stated above is:
<span> Gas is easily compressible because the molecules of a gas are much further apart than
those of a solid.</span>
characteristic properties of gases:
(1) they are easy to compress,
(2) they expand to fill their containers, and
(3) they occupy far more space than the liquids or solids
from which they form.