Answer:Rate of reaction can be determined in terms of concentration of reactants consumed or concentration of product formed per unit time
Explanation: For the reaction below
A ===>B
The reactant is A while the product given is B.
Reaction rate = Δ[B]/Δt = -Δ[A]/Δt
The concentration of A will decrease with time while the concentration of B will increases with time.
The negative sign in -Δ[A]/Δt is to convert the expression to positive since the change will always be negative (decreases)
Baloon with 3 moles og oxygen at 1 atm.The temperature of the balloon is <u>4 Kelvin</u>.
An ideal gas is a theoretical gas composed of many randomly transferring factor particles that aren't difficult to interparticle interactions. the best gasoline idea is beneficial because it obeys the precise gas law, a simplified equation of country, and is amenable to evaluation under statistical mechanics.
An ideal gas is described as one for which both the extent of molecules and forces between the molecules are so small that they have got no effect at the behavior of the gas. The real gas that acts almost like a really perfect gasoline is helium. that is due to the fact helium, in contrast to maximum gases, exists as an unmarried atom, which makes the van der Waals dispersion forces as low as viable
Using the ideal gas equation:-
Given;
P₁ = 1 atm
V₁ = 100 L
n = 3
r = 8.314
T = PV/nR
= 1 × 100 / 3 × 8.314
= 4 K
Learn more about ideal gas here:-brainly.com/question/20348074
#SPJ4
Hello there!
Sedimentary rocks are formed due to layers so the answer is A.
Best wishes
-HuronGirl
A moon would be the correct answer.
Answer:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles. With an increase in temperature, the particles move faster as they gain kinetic energy, resulting in increased collision rates and an increased rate of diffusion.
Explanation:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles. With an increase in temperature, the particles move faster as they gain kinetic energy, resulting in increased collision rates and an increased rate of diffusion.