The concentration of A will be <em>0.34 mol·L⁻¹</em> after 60 min.
In a first-order reaction, the formula for the amount remaining after <em>n</em> half-lives is
![\text{[A]} = \frac{\text{[A]}_{0}}{2^{n}}\\](https://tex.z-dn.net/?f=%5Ctext%7B%5BA%5D%7D%20%3D%20%5Cfrac%7B%5Ctext%7B%5BA%5D%7D_%7B0%7D%7D%7B2%5E%7Bn%7D%7D%5C%5C)
If 
∴
Bananas ripening is a chemical change. First, there is a change in color of peel from green to yellow then to brown. Second, there is a change in taste. You will notice a change in taste as the bananas ripen. They become sweeter and sweeter as they begin to ripen.
The answer is 79 I believe
Answer:
1 and 3 i think so i could be wrong
<h3>Answer:</h3>
18.75 grams
<h3>Explanation:</h3>
- Half-life refers to the time taken by a radioactive material to decay by half of the original mass.
- In this case, the half-life of element X is 10 years, which means it takes 10 years for a given mass of the element to decay by half of its original mass.
- To calculate the amount that remained after decay we use;
Remaining mass = Original mass × (1/2)^n, where n is the number of half-lives
Number of half-lives = Time for the decay ÷ Half-life
= 40 years ÷ 10 years
= 4
Therefore;
Remaining mass = 300 g × (1/2)⁴
= 300 g × 1/16
= 18.75 g
Hence, a mass of 300 g of an element X decays to 18.75 g after 40 years.