Explanation:
<em>The height of the pendulum is measured from the lowest point it reaches (point 3). </em>
At 1, the kinetic energy of the pendulum is zero (because it is not moving), and it has maximum potential energy.
At 2, the pendulum has both kinetic and potential energy, and how much of each it has depends on its height—smaller the height greater the kinetic energy and lower the potential energy.
At 3, the height is zero; therefore, the pendulum has no potential energy, and has maximum kinetic energy.
At 4, the pendulum again gains potential energy as it climbs back up, Again how much of each forms of energy it has depends on its height.
At 5, the maximum height is reached again; therefore, the pendulum has maximum potential energy and no kinetic energy.
Hope this helps :)
Answer:
C. The bug's change in momentum is equal to the car's change in momentum.
Explanation:
As we know by Newton's 2nd law

here we have also know that when car hits the bug then force applied by wind shield on the bug is same as the force applied by the bug on the car's wind shield as per Newton's III law

so we know that

so we have

so correct answer will be
C. The bug's change in momentum is equal to the car's change in momentum.
To solve this problem we will apply the concepts related to Coulomb's law for which the Electrostatic Force is defined as,

Here,
k = Coulomb's constant
= Charge at each object
r = Distance between them
As the distance is doubled so,





Therefore the factor is 1/4
Answer:
The mechanical advantage of a machine is the ratio of the load (the resistance overcome by a machine) to the effort (the force applied). For an ideal (without friction) mechanism, it is also equal to: There is no unit for mechanical advantages since the unit for both input and output forces cancel out.
Explanation:
Ok but y I thought it was upside down tho...