Answer:
See answers below
Explanation:
a.
F = mg,
15.5 N = m(9.8 m/s²)
m = 1.58 kg
b.
Fnet = Applied force - resistance,
Fnet = 18 N - 4.30 N,
Fnet = 13.70 N
Fnet = ma
13.70 N = (1.58 kg)a
a = 8.67 m/s²
For the free body diagram, draw a box with an upward arrow labeled 15.5 N, a downward label labeled 15.5 N, a right label labeled 18 N, and a left label labeled 4.30 N.
A. Molecular solids tend to have lower melting points than Ionic so it would be Ionic if it weren't for Molecular.
#1
As we know that

now plug in all data into this


now from the formula of strain




#2
As we know that
pressure * area = Force
here we know that


now force is given as

#3
As we know that density of water will vary with the height as given below

here we know that


now density is given as


#4
as we know that pressure changes with depth as per following equation

here we know that

now we will have



here we will have

so it is 20.1 m below the surface
#5
Here net buoyancy force due to water and oil will balance the weight of the block
so here we will have




so it is 3.48 cm below the interface
Answer:
31677.2 lb
Explanation:
mass of hammer (m) = 3.7 lb
initial velocity (u) = 5.8 ft/s
final velocity (v) = 0
time (t) = 0.00068 s
acceleration due to gravity (g) 32 ft/s^{2}
force = m x ( a + g )
where
- m is the mass = 3.7 lb
- g is the acceleration due to gravity = 32 ft/s^{2}
- a is the acceleration of the hammer
from v = u + at
a = (v-u)/ t
a = (0-5.8)/0.00068 = -8529.4 ( the negative sign showa the its decelerating)
we can substitute all required values into force= m x (a+g)
force = 3.7 x (8529.4 + 32) = 31677.2 lb
Frequency = (speed) / (wavelength)
Speed = 3 x 10⁸ m/s
Wavelength = 3 cm = 0.03 m
Frequency = (3 x 10⁸ m/s) / (0.03 m)
Frequency = (3 x 10⁸ / 0.03) (m / m-s)
Frequency = 1 x 10¹⁰ Hz (10 Gigahertz)