1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ohaa [14]
3 years ago
11

The acceleration due to gravity on the surface of Jupiter is about 2.5 times the acceleration due to gravity on Earth’s surface.

What would be the weight of a space probe on the surface of Jupiter?
a.2.5 times lighter than on EarthB.6.25 times heavier than on EarthC.2.5 times heavier than on EarthD.6.25 times lighter than on Earth
Physics
2 answers:
Paraphin [41]3 years ago
5 0
C would be your answer because we can tell by using the equation for finding force so taking m*a lets pretend I weighed 10 kg on earth and earth's acceleration is roughly 10 m/s^2 so well use that, that means I would have a force on earth of 100N and if the acceleration is increased 2.5 times I would then have a force of 250N on Jupiter which roughly translates to weight of 25 kg on earth making C the answer
melisa1 [442]3 years ago
4 0
The answer is 2.5 times heavier than on Earth !!

so the answer is C !!
You might be interested in
A spherical asteroid of average density would have a mass of 8.7×1013kg if its radius were 2.0 km.A)If you and your spacesuit ha
WITCHER [35]

A) 0.189 N

The weight of the person on the asteroid is equal to the gravitational force exerted by the asteroid on the person, at a location on the surface of the asteroid:

F=\frac{GMm}{R^2}

where

G is the gravitational constant

8.7×10^13 kg is the mass of the asteroid

m = 130 kg is the mass of the man

R = 2.0 km = 2000 m is the radius of the asteroid

Substituting into the equation, we find

F=\frac{(6.67\cdot 10^{-11})(8.7\cdot 10^{13} kg)(130 kg)}{(2000 m)^2}0.189 N=

B) 2.41 m/s

In order to orbit just above the surface of the asteroid (r=R), the centripetal force that keeps the astronaut in orbit must be equal to the gravitational force acting on the astronaut:

\frac{GMm}{R^2}=\frac{mv^2}{R}

where

v is the speed of the astronaut

Solving the formula for v, we find the minimum speed at which the astronaut should launch himself and then orbit the asteroid just above the surface:

v=\sqrt{\frac{2GM}{R}}=\sqrt{\frac{2(6.67\cdot 10^{-11})(8.7\cdot 10^{13} kg)}{2000 m}}=2.41 m/s

3 0
3 years ago
I. What is the initial velocity of the car?
qaws [65]

Answer:

I. 0 m/s

II. 20 m/s

III. Part BC

Explanation:

I. Determination of the initial velocity.

From the diagram given above,

The motion of the car starts from the origin. This implies that the car start from rest and as such, the initial velocity of the car is 0 m/s

II. Determination of the maximum velocity attained.

From the diagram given above, we can see clearly that the maximum velocity is 20 m/s.

III. Determination of the part of the graph that represents zero acceleration.

It important that we know the meaning of zero acceleration.

Zero acceleration simply means the car is not accelerating. This can only be true when the car is moving with a constant velocity.

From the graph given above, the car has a constant velocity between B and C.

Therefore, part BC illustrates zero acceleration.

6 0
3 years ago
A nonconducting sphere has radius R = 1.29 cm and uniformly distributed charge q = +3.83 fC. Take the electric potential at the
zalisa [80]

Answer:

a) -2.516 × 10⁻⁴ V

b) -1.33 × 10⁻³ V

Explanation:

The electric field inside the sphere can be expressed as:

E= \frac{kqr}{R^3}

The potential at a distance can be represented as:

V(r) - V(0) = -\int\limits^r_0 {\frac{kqr}{R^3} } \, dr^2

V(r) - V(0) = [\frac{qr^2}{8 \pi E_0R^3 }]₀

V(r) =   -[\frac{qr^2}{8 \pi E_0R^3 }]₀

Given that:

q = +3.83 fc = 3.83 × 10⁻¹⁵ C

r = 0.56 cm

 = 0.56 × 10⁻² m

R = 1.29 cm

  =  1.29 × 10⁻² m

E₀ = 8.85 × 10⁻¹² F/m

Substituting our values; we have:

V(r) = -\frac{(3.83*10^{-15}C)(0.560*10^{-2}m)^2}{8 \pi (8.85*10^{-12}F/m)(1.29*10^{-2}m)^3}

V(r) = -2.15  × 10⁻⁴ V

The difference between the radial distance  and center can be expressed as:

V(r) - V(0) = -\int\limits^R_0 {\frac{kqr}{R^3} } \, dr^2

V(r) - V(0) =  [\frac{qr^2}{8 \pi E_0R^3 }]^R

V(r) = -\frac{qR^2}{8 \pi E_0R^3 }

V(r) = -\frac{q}{8 \pi E_0R }

V(r) = -\frac{(3.83*10^{-15}C)}{8 \pi (8.85*10^{-12}F/m)(1.29*10^{-2}m)}

V(r) = -0.00133

V(r) = - 1.33 × 10⁻³ V

8 0
3 years ago
Two teams of nine members each engage in a tug of war. Each of the first team’s members has an average mass of 68 kg and exerts
olga2289 [7]

Answer:

a)  a = - 0.106 m/s^2  (←)

b) T = 12215.1064 N

Explanation:

If

F₁ = 9*1350 N = 12150 N   (→)

F₂ = 9*1365 N = 12285 N  (←)

∑Fx = M*a = (M₁  +M₂)*a           (→)

F₁ - F₂ = (M₁  +M₂)*a        

→       a = (F₁ - F₂) / (M₁  +M₂ ) = (12150-12285)N/(9*68+9*73)Kg

→       a = - 0.106 m/s^2            (←)

(b) What is the tension in the section of rope between the teams?

If we apply  ∑Fx = M*a   for the team 1

F₁ - T = - M₁*a  ⇒   T = F₁ + M₁*a  

⇒   T = 12150 N + (9 * 68 Kg)*(0.106 m/s^2)

⇒ T = 12215.1064 N

If we choose the team 2 we get

- F₂ + T = - M₂*a  ⇒   T = F₂ - M₂*a  

⇒   T = 12285 N - (9 * 73 Kg)*(0.106 m/s^2)

⇒ T = 12215.1064 N

4 0
3 years ago
A hole is punched at A in a plastic sheet by applying a 660-N force P to end D of lever CD, which is rigidly attached to the sol
olasank [31]

Answer:

hello your question lacks some data and required diagram

G = 77 GPa,  т all = 80 MPa

answer : required diameter = 252.65 * 10-^3 m

Explanation:

Given data :

force ( P )  = 660 -N force

displacement = 15 mm

G = 77 GPa

т all = 80 MPa

i) Determine the required diameter of shaft BC

considering the vertical displacement ( looking at handle DC from free body diagram )

D' = 0.3 sin∅  ,   where D = 0.015

hence ∅ = 2.8659°

calculate the torque acting at angle ∅  of  CD on the shaft BC

Torque = 660 * 0.3 cos∅

             = 660 * 0.3 * cos 2.8659 = 198 * -0.9622 = 190.5156 N

hello attached is the remaining part of the solution

4 0
3 years ago
Other questions:
  • Select the true statements: check all that apply check all that apply oxidizing agents can convert co into co2. a reducing agent
    15·1 answer
  • A girl pushes a cart with a force of 10 N. if the cart has a mass of 5 kg, what is its acceleration?
    13·1 answer
  • What is the wavelength (in nm) of a photon emitted during transition from the n = 3 state to the n = 1 state in the H atom?
    6·1 answer
  • Order the speed of sound through these materials from the slowest to the fastest.
    12·1 answer
  • The brain is most active during which portion each sleep cycle
    14·2 answers
  • 4) A racing car undergoing constant acceleration covers 140 m in 3.6 s. (a) If it’s moving at 53 m/s at the end of this interval
    9·1 answer
  • A car is traveling at 120 km/h (75 mph). When applied the braking system can stop the car with a deceleration rate of 9.0 m/s2.
    14·1 answer
  • What is the correct answer?
    5·2 answers
  • The moon has a mass of 7.34 . 102 kg and a radius of 1.74 . 106 meters. If you have a mass of 66 kg,
    6·1 answer
  • A spring of negligible mass and force constant k = 430 N/m is hung vertically, and a 0.270 kg pan is suspended from its lower en
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!