Passengers which are facing forward in the direction that train is moving, their bodies will move forward in application of sudden stop of train.
<h3>What is force of inertia?</h3>
Force of inertia is the force which acts in the opposite direction of the force of acceleration acting on the body.
Given infroamtion-
The passengers are facing forward in the direction that the train is moving.
The train comes to a sudden stop.
Lets see what happens step wise-
- Here, the train in moving in the forward direction and the passengers are also facing forward in the direction that the train is moving.
- Now the train comes to a sudden stop. By this sudden stop the train stops suddenly but all the object including the passengers is still travelling forward due to the inertia force.
- Thus all the passenger will tend to move in the direction as they are still travelling.
Hence, passengers which are facing forward in the direction that train is moving, their bodies will move forward in application of sudden stop of train.
Learn more about the force of inertia here;
brainly.com/question/10454047
According to newton's third law of motion, when a hammer strikes and exerts force to push it into a piece of wood, the nail <span>C. exerts an equal or opposite force on the hammer. The third law of motion states that every action has an equal BUT opposite reaction. This means that the nail exerts the same force the hammer exerts on it.</span>
Answer:
Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its surroundings. The law is frequently qualified to include the condition that the temperature difference is small and the nature of heat transfer mechanism remains the same. As such, it is equivalent to a statement that the heat transfer coefficient, which mediates between heat losses and temperature differences, is a constant. This condition is generally met in heat conduction (where it is guaranteed by Fourier's law) as the thermal conductivity of most materials is only weakly dependent on temperature. In convective heat transfer, Newton's Law is followed for forced air or pumped fluid cooling, where the properties of the fluid do not vary strongly with temperature, but it is only approximately true for buoyancy-driven convection, where the velocity of the flow increases with temperature difference. Finally, in the case of heat transfer by thermal radiation, Newton's law of cooling holds only for very small temperature differences.
When stated in terms of temperature differences, Newton's law (with several further simplifying assumptions, such as a low Biot number and a temperature-independent heat capacity) results in a simple differential equation expressing temperature-difference as a function of time. The solution to that equation describes an exponential decrease of temperature-difference over time. This characteristic decay of the temperature-difference is also associated with Newton's law of cooling
Meters for mass kilograms for volume cubic meters for density kilograms per cubic meter