Think of a wedge as something you put in between objects, so it is a separates objects
Answer:

Explanation:
Given:
volume of air in the room, 
temperature of the room, 
<u>Saturation water vapor pressure at any temperature T K is given as:</u>
<u />
<u />
putting T=298 K we have

<u>The no. of moles of water molecules that this volume of air can hold is:</u>
Using Ideal gas law,



is the maximum capacity of the given volume of air to hold the moisture.
Currently we have 80% of n, so the mass of 20% of n:

where;
M= molecular mass of water

is the mass of water that can vaporize further.
Answer:
Explanation:
Since 100C is the boiling temperature for water, for this problem we don't need to calculate the energy needed to get to the boiling point, just the heat or energy needed to vaporize the water to steam at 100C.
The formula for this is q=m(delta)
q is Joules of heat needed to vaporize the water to steam at 100C
m is mass in grams
Delta is in Joules per gram and can be looked up for water at this temperature. Here, it is approximately 2260J/g. This online lecture should help ease understanding: https://cabrillo.instructure.com/courses/10267/modules/items/256219
Therefore...
q=2.5g (2260J/g)= 5650J = 5.65kJ
I do not do Physics tutoring but am happy to answer questions here.
Answer:
One example of a fixed pulley is a Flag Pole
Explanation:
A good example of a fixed pulley is a flag pole: When you pull down on the rope, the direction of force is redirected by the pulley, and you raise the flag. Other examples of movable pulleys include construction cranes, modern elevators, and some types of weight lifting machines at the gym.
Newton taught us that Force = (mass) x (acceleration)
Force = (0.2) x (20) = <em>4 newtons</em> .
Something to think about: The ball can only accelerate while the club-face
is in contact with it. Once the ball leaves the club, it can't accelerate any more,
because the force against it is gone.