Wher is the image add it for us
Explanation:
It is given that,
Mass of the box, m = 100 kg
Left rope makes an angle of 20 degrees with the vertical, and the right rope makes an angle of 40 degrees.
From the attached figure, the x and y component of forces is given by :






Let
and
is the resultant in x and y direction.


As the system is balanced the net force acting on it is 0. So,
.............(1)
..................(2)
On solving equation (1) and (2) we get:
(tension on the left rope)
(tension on the right rope)
So, the tension on the right rope is 1063.36 N. Hence, this is the required solution.
Answer : The change in enthalpy of the reaction is, -310 kJ
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given main reaction is,

The intermediate balanced chemical reaction will be,
(1)

(2)

(3)

Now we will reverse the reaction 1 and multiply reaction 1 by 2, reaction 2 by 2 and reaction 3 by 3 then adding all the equations, we get :
(1)

(2)

(3)

The expression for enthalpy of formation of
will be,



Therefore, the change in enthalpy of the reaction is, -310 kJ
They were going at a velocity 4.07m/s
<u>Explanation:</u>
Distance s =5 m
initial velocity u= 0.8 m/s
Acceleration a =1.6m/s2
We have to calculate the velocity with which they were going afterwards i.e final velocity.
Use the equation of motion

They were going with a velocity 4.07 m/s afterwards.
Answer:
a = 8.951 m/s²
Explanation:
given,
angle = 0.52 radians
μ_s = 0.84
μ_k = 0.48
acceleration = ?
using
F + f = m a
mg sin θ + μk mg cos θ = m a
a = g sin θ + μk g cos θ
a = 9.8 x sin 0.52 + 0.48 x 9.8 x cos 0.52
a = 4.869 + 4.082
a = 8.951 m/s²
the magnitude of acceleration is a = 8.951 m/s²