1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shepuryov [24]
3 years ago
7

What is the equation for frequency, wavelength, and speed of a wave?

Physics
1 answer:
Nastasia [14]3 years ago
7 0

Answer:

       λ = v/f

Explanation:

frequency=f

wavelength = λ

speed of a wave=v

You might be interested in
You are working on charge-storage devices for a research center. Your goal is to store as much charge on a given device as possi
zheka24 [161]

Answer:

Part A the answer is the dielectric constant.

Part B  Mica- mylar- paper- quartz

Explanation:

The capacity of a capacitor is given by

           C = ε ε₀ A / d

Where the dielectric constant (ε) is the value of the material between the plates of the capacitor, we see that as if value increases the capacity also increases.

Another magnitude that we must take into account that the maximum working voltage, the greater the safer is the capacitor

the flexibility of the material must also be taken into account

Part A the answer is the dielectric constant.

Pate B order the materials from best to worst

Mica. The best ever

Mylar Flexible

Paper Low capacity, low working voltage, flexible

Quartz high dielectric, but brittle

8 0
3 years ago
In an intergalactic competition, spaceship pilots compete to see who can cover the distance between two asteroids in the short-
pogonyaev

Answer:

a)  truc is C,  b) correct result is the B

Explanation:

As the speed of the competition is very high, for the judges the speed is

           v = d / t

           v = 3 109 m / 20

           v = 1.5 108 m / s

This is half the speed of light. For these high speeds we must use the relations of special relativity.

For the time          t = to γ

For distance         L = Lo / γ

                            γ = √ (1-v2 / c2)

Own time and distance (to and Lo) corresponds to the observer who is not moving the judges in this case

Let's look for the range value

                     γ = 1 / √ (1 - (1.5 / 3) 2) = 1 / 0.866 = 1.15

The time              t = 20 1.15 = 23 s

The distance       L = 3 10 9 /1.15 = 2.60 109 m

From these results we see that time increases and the distance is shorter.

Let's review the claims

A) False. It's the opposite

B) False

C) True. It is according to the result found

D) False.

In the nuclear fusion process, we will also use the special relativity that has a relationship between energy and mass

         ΔE = c² Δm

As in the process energy is released, for the law of conservation of the mass of energy to be fulfilled, the total mass of the products, He atom, must be reduced.

Therefore the correct result is the B

4 0
4 years ago
The most soaring vocal melody is in Johann Sebastian Bach's Mass in B minor. In one section, the basses, tenors, altos, and sopr
OlgaM077 [116]

Answer:

Detailed step wise solution is attached below

Explanation:

(a) wavelength of the initial note 2.34 meters

(b) wavelength of the final note 0.389 meters

(d) pressure amplitude of the final note 0.09 Pa

(e) displacement amplitude of the initial note 4.78*10^(-7) meters

(f) displacement amplitude of the final note 3.95*10^(-8) meters

6 0
4 years ago
You drop a stone down a well that is 19.60 m deep. How long is it before you hear the splash? The speed of sound in air is 343 m
ki77a [65]

So, the time needed before you hear the splash is approximately <u>2.06 s</u>.

<h3>Introduction</h3>

Hi ! In this question, I will help you. This question uses two principles, namely the time for an object to fall freely and the time for sound to propagate through air. When moving in free fall, the time required can be calculated by the following equation:

\sf{h = \frac{1}{2} \cdot g \cdot t^2}

\sf{\frac{2 \cdot h}{g} = t^2}

\boxed{\sf{\bold{t = \sqrt{\frac{2 \cdot h}{g}}}}}

With the following condition :

  • t = interval of the time (s)
  • h = height or any other displacement at vertical line (m)
  • g = acceleration of the gravity (m/s²)

Meanwhile, for sound propagation (without sound reflection), time propagates is the same as the quotient of distance by time. Or it can be formulated by :

\boxed{\sf{\bold{t = \frac{s}{v}}}}

With the following condition :

  • t = interval of the time (s)
  • s = shift or displacement (m)
  • v = velocity (m/s)

<h3>Problem Solving</h3>

We know that :

  • h = height or any other displacement at vertical line = 19.6 m
  • g = acceleration of the gravity = 9.8 m/s²
  • v = velocity = 343 m/s

What was asked :

  • \sf{\sum t} = ... s

Step by step :

  • Find the time when the object falls freely until it hits the water. Save value as \sf{\bold{t_1}}

\sf{t_1 = \sqrt{\frac{2 \cdot h}{g}}}

\sf{t_1 = \sqrt{\frac{2 \cdot \cancel{19.6} \:_2}{\cancel{9.8}}}}

\sf{t_1 = \sqrt{4}}

\sf{\bold{t_1 = 2 \: s}}

  • Find the time when the sound propagate through air. Save value as \sf{\bold{t_2}}

\sf{t_2 = \frac{h}{v}}

\sf{t_2 = \frac{19.6}{343}}

\sf{\bold{t_2 \approx 0.06 \: s}}

  • Find the total time \sf{\bold{\sum t}}

\sf{\sum t = t_1 + t_2}

\sf{\sum t \approx 2 + 0.06}

\boxed{\sf{\sum t \approx 2.06}}

<h3>Conclusion</h3>

So, the time needed before you hear the splash is approximately 2.06 s.

3 0
3 years ago
How is motion affected by change in mass of an object and forces applied?
densk [106]
Newtons second law says that the acceleration of an object (produced by a net force) is directly proportional to that magnitude of the net force. E.g. F = ma
where F is the net force of an object, m is mass and a is acceleration.
For example, if an object had a large mass, there would have to be more force in order to move it than if it was lighter.  
In a linear motion, if you pushed two objects, one slightly larger than the other, with the same force, the acceleration of the smaller object would be bigger than the larger one. So the motion (change in position over time), of the larger object would be seen as lesser than the smaller one (in a situation where both forces are equal).
6 0
3 years ago
Other questions:
  • When does it start to cool down in arizona?
    9·1 answer
  • The Bohr radius a0 is the most probable distance between the proton and the electron in the Hydrogen atom, when the Hydrogen ato
    9·1 answer
  • Basic of Archimedes's principle of how fluid can make body to float and sink.​
    10·1 answer
  • Albert views Henry moving by at a constant velocity. Henry has a light clock and also a stopwatch which were synchronized when a
    11·1 answer
  • which of the following describes the principle of conversation of charge? a.charge is created b. a charge can be transferred c.
    15·1 answer
  • A 50-cm wire placed in an east-west direction is moved horizontally to the north with a speed of 2.0 m/s. the horizontal compone
    11·2 answers
  • For the following, determine the final volume in ml (V2) of a gas when it is heated to 373K (T2) when it's starting temperature
    13·1 answer
  • . An experimental rocket plane lands on skids on a dry lake bed. If it’s traveling at 80.0 m/s when it touches down, how far doe
    12·1 answer
  • If the atomic mass of Sodium-18 is 18.02597 u, what is the binding energy?
    5·1 answer
  • a new planet is found with a density one third as much at earth and a radius twice that of earth. what is the acceleration due t
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!