Answer:
(a) 32.5 kgm/s
(b) 32.5 Ns
(c) 10.8 N
Explanation:
The change in momentum can be calculated from the definition of linear momentum:

Then, the change in momentum of the body is of 32.5 kgm/s (a).
Now, from the impulse-momentum theorem, we know that the change in momentum of a body
is equal to the impulse
exerted to it. So, the impulse produced by the force equals 32.5 kgm/s (or 32.5 Ns) (b).
Finally, since we know the value of the impulse and the interval of time, we can easily solve for the magnitude of the force:

It means that the magnitude of the force is of 10.8N (c).
Answer
given,
radius of the circular orbit, r = 0.53 x 10⁻¹⁰ m
mass of electron, M = 9.11 x 10⁻³¹ Kg
charge of electron, q₁ = 1.6 x 10⁻¹⁹ C
q₂ = 1.6 x 10⁻¹⁹ C
we know, force between two charges


F = 8.20 x 10⁻⁸ N
b) using newton's second law
F = m a
m a = 8.20 x 10⁻⁸

a = 9 x 10²² m/s²
c) speed of the electron


v² = 4.77 x 10¹²
v = 2.18 x 10⁶ m/s
d) the period of the circular motion.



T = 1.53 x 10⁻¹⁶ s
Answer:
Explanation:
Given
Work required to stretch 1 ft is 12 ft-lb
and we have to find work required to stretch 3 in.
i.e. 


divide (1)&(2)



Burning a log because you are turning the log into ash from wood.