The moment of inertia of a point mass about an arbitrary point is given by:
I = mr²
I is the moment of inertia
m is the mass
r is the distance between the arbitrary point and the point mass
The center of mass of the system is located halfway between the 2 inner masses, therefore two masses lie ℓ/2 away from the center and the outer two masses lie 3ℓ/2 away from the center.
The total moment of inertia of the system is the sum of the moments of each mass, i.e.
I = ∑mr²
The moment of inertia of each of the two inner masses is
I = m(ℓ/2)² = mℓ²/4
The moment of inertia of each of the two outer masses is
I = m(3ℓ/2)² = 9mℓ²/4
The total moment of inertia of the system is
I = 2[mℓ²/4]+2[9mℓ²/4]
I = mℓ²/2+9mℓ²/2
I = 10mℓ²/2
I = 5mℓ²
The microwave ovens rotate at a rate of about 0.105 rev/s.
The microwave rotation is the number of revolutions in a unit of time. To change the unit for angular velocity, assume that the quantity is multiplied by the unit it has. Then change to the desired units. The angular velocity is denoted by ω and has a magnitude of 6.3 rev/min.
ω = 6.3 rev/min

- 1 minute = 60 seconds
- The revolution unit didn't change


ω = 0.105 rev/s
Learn more about Angular velocity here: brainly.com/question/29344944
#SPJ4
Well, the rings surrounding a planet are made out of rock. A ring surrounding the sun would be impossible since the sun can reach more than 27 million degrees Fahrenheit (15 million degrees Celsius.)
Hope this helped.
False, Carbon usually forms four covalent bonds.
Answer:
The rod`s charge must be positive, because the gravity force is pointing downwards and the electrostatic force must be pointing upwards (in order to balance the gravity force)
The charge is q_2 = 1.667 times 10^(-7) C
Explanation:
F_e = F_g
where F_g = m g and F_e= (1/4 pi e_0)*(q_1*q_2)/d^2,
please see the file attached for more details.