Complete question
A 2700 kg car accelerates from rest under the action of two forces. one is a forward force of 1157 newtons provided by traction between the wheels and the road. the other is a 902 newton resistive force due to various frictional forces. how far must the car travel for its speed to reach 3.6 meters per second? answer in units of meters.
Answer:
The car must travel 68.94 meters.
Explanation:
First, we are going to find the acceleration of the car using Newton's second Law:
(1)
with m the mass , a the acceleration and the net force forces that is:
(2)
with F the force provided by traction and f the resistive force:
(2) on (1):
solving for a:
Now let's use the Galileo’s kinematic equation
(3)
With Vo te initial velocity that's zero because it started from rest, Vf the final velocity (3.6) and the time took to achieve that velocity, solving (3) for :
Answer:
1) the capacitance of the capacitor increases. This is due to the induction of opposite charges on the two surfaces of the dielectric by the plate, this increased the charge in the field, from C =Q/v, it is seen that capacitance C will increase with increase in Q since v is constant.
2) the electric field intensity will also increase with increase in electric charges provided plate separation d remains constant.
Trial and error
scientific laws and theories are proven by experimental data and large bodies of evidence.
Hey there,
Your question states: <span>How long does it take for light from a star that is 8 light-years away to reach earth?
It take just about
(</span>
8 earth years) <span> for light from a star that is 8 light-years away to reach earth. That is how </span>
it would take.
Hope this helps.
~Jurgen