<u>Voltage:</u>
It is basically the difference between the charges of the materials on the ends of the Wire
<em>also known as potential difference</em>
It is very similar to the movement of air, it moves from higher density to lower density. in this case, the change in density is the potential difference
So, since voltage is the difference between the charge available on the ends of a wire. Even if the wire splits in parallel circuit, the difference of the charges remains the same
<em>the more the potential difference, the faster electrons will move to the material with lower charge</em>
<u>Current:</u>
Current is the amount of electrons moving through a cross-section of a wire in a period of time
So basically, it is the amount of electrons that move across a given point on a wire in a period of time
If the wire splits, we will have the same amount of electrons moving through as they would if the wire was not split but now, the electrons passing are divided and hence, if we measure the current after the split, we will find that we have a lower current
that's because we have less charge moving through the cross-section of the wire since some of those electrons are moving through a different wire
That's why the current splits in a parallel circuit
If you wrap some of the wire around the nail in one direction and some of the wire in the other direction, the magnetic fields from the different sections fight each other and cancel out, reducing the strength of your magnet.
Answer:
mountains are limited in their theoretical height by several processes. First is isostasy: the bigger a mountain gets, the more it weighs down its tectonic plate, so it sinks lower. ... Bottom line: mountains can get taller than Mount Everest in earth gravity, like the Appalachians probably did—but not much taller.
Answer:
ac = 3.92 m/s²
Explanation:
In this case the frictional force must balance the centripetal force for the car not to skid. Therefore,
Frictional Force = Centripetal Force
where,
Frictional Force = μ(Normal Force) = μ(weight) = μmg
Centripetal Force = (m)(ac)
Therefore,
μmg = (m)(ac)
ac = μg
where,
ac = magnitude of centripetal acceleration of car = ?
μ = coefficient of friction of tires (kinetic) = 0.4
g = 9.8 m/s²
Therefore,
ac = (0.4)(9.8 m/s²)
<u>ac = 3.92 m/s²</u>
Answer:
a
Explanation:
Using fences.................................