The correct answer is B, electrons emit and absorb energy based on their position around the nucleus.
Answer:
the net toque is τ=8.03* 10⁻⁴ N*m
Explanation:
Assuming the disk has constant density ρ, the moment of inertia I of is
I = ∫r² dm
since m = ρ*V = ρπR² h , then dm= 2ρπh r dr
thus
I = ∫r²dm = ∫r²2ρπh r dr =2ρπh ∫r³ dr = 2ρπh (R⁴/4- 0⁴/4)= ρπhR⁴ /2= mR²/2
replacing values
I = mR²/2= 0.017 kg * (0.06 m)²/2 = 3.06 *10⁻⁵ kg*m²
from Newton's second law applied to rotational motion
τ= Iα , where τ=net torque and α= angular acceleration
since the angular velocity ω is related with the angular acceleration through
ω= ωo + α*t → α =(ω-ωo)/t = (21 rad/s-0)/0.8 s = 26.25 rad/s²
therefore
τ= Iα= 3.06 *10⁻⁵ kg*m²*26.25 rad/s² = 8.03* 10⁻⁴ N*m
Non clastic sedimentary rocks from chemical reactions, chiefly in the ocean. Nonclastic and clastic sedimentary rocks are the only members of the rock family that contain fossils as well as indicators of the climate that was present when the rock was formed.
Answer:
2.5m/s^2
Explanation:
Step one:
given
distance = 20meters
time = 2 seconds
initial velocity u= 0m/s
let us solve for the final velocity
velocity = distance/time
velocity= 20/2
velocity= 10m/s

divide both sides by 40
