Answer:
A) hydrostatic force on top of cube = 882.9N
B) hydrostatic force on sides of cube = 0N
Explanation:
Detailed explanation and calculation is shown in the image below
when the ball hits the floor and bounces back the momentum of the ball changes.
the rate of change of momentum is the force exerted by the floor on it.
the equation for the force exerted is
f = rate of change of momentum

v is the final velocity which is - 3.85 m/s
u is initial velocity - 4.23 m/s
m = 0.622 kg
time is the impact time of the ball in contact with the floor - 0.0266 s
substituting the values

since the ball is going down, we take that as negative and ball going upwards as positive.
f = 189 N
the force exerted from the floor is 189 N
(B) 2.25cm
<u>Explanation:</u>
Given:
At 40 hours, the height of the bamboo plant is 2.1cm
At 50 hours, the height of the bamboo plant is 2.4cm
Height of the bamboo plant after 45 hours = ?
The difference in length from 40 to 50 hours = 2.4 - 2.1cm
= 0.3 cm
Mean of 40 and 50 is 45.
Thus,
At 45 hours, the height will increase by 0.3/2
= 0.15 cm
Height at 45 hour = 2.1 + 0.15cm
= 2.25cm
Therefore, the height of the plant after 45 hours is 2.25cm
In order to give a spaceship at rest in a specific reference frame s a speed increment of 0.500c, seven increments are required. Then, in this new frame, it receives an additional 0.500c increment.
The speed of an object, also known as v in kinematics, is a scalar quantity that refers to the size of the change in that object's position over time or the size of the change in that object's position per unit of time. The distance travelled by an object in a certain period of time divided by the length of the period gives the object's average speed in that period.
The spacecraft moves at v1 = 0.5c after the initial increment.The equation becomes V2 = V+V1/1+V*V1/c after the second one. 2 V2 = 0.5c+0.50c/1+(0.50c)^2/c^ 2 = 0.80c
Likewise, V3 = 0.929c
V4 = 0.976c
V5 = 0.992c
V6 = 0.99c
V7 = 0.999c
Learn more about speed here
brainly.com/question/28224010
#SPJ4
Answer:
Current will decrease.
Explanation:
When we increase the number of stepping in transformer, the voltage will increase as its is directly proportional to the number of turn of stepping. Thus as the voltage will increase, current will decrease. As per the equation of ideal transformer, E1 / E2 = I2 / I1
E1 and E2 are the voltages in primary and secondary winding and I1 and I2 are the current.
As the number of turns will be increased more inevitable losses will be generated that dissipates heat thus warming the primary.
Though the conservation of energy is obeyed but losses occur in this scenario hence step-up transformers cannot be used to create free energy.