Answer and explanation: Just as the organs in an organ system work together to accomplish their task, so the different organ systems also cooperate to keep the body running. For example, the respiratory system and the circulatory system work closely together to deliver oxygen to cells and to get rid of the carbon dioxide the cells produce.
Answer:
c. The steady-state value of the current depends on the resistance of the resistor.
Explanation:
Since all the components are connected in series, when the switch is at first open, current will not flow round the circuit. As current needs to flow through from the positive terminal of the battery through the resistor, inductor, and switch to the negative terminal of the battery.
But the moment the switch is closed, at the initial time t = 0, the current flow through from the positive terminal of the battery through the resistor, inductor, and switch to the negative terminal of the battery. It then begins to increase at a rate that depends upon the value of the inductance of the inductor.
Answer:
Velocity = 3.25[m/s]
Explanation:
This problem can be solved if we use the Bernoulli equation: In the attached image we can see the conditions of the water inside the container.
In point 1, (surface of the water) we have the atmospheric pressure and at point 2 the water is coming out also at atmospheric pressure, therefore this members in the Bernoulli equation could be cancelled.
The velocity in the point 1 is zero because we have this conditional statement "The water surface drops very slowly and its speed is approximately zero"
h2 is located at point 2 and it will be zero.
![(P_{1} +\frac{v_{1}^{2} }{2g} +h_{1} )=(P_{2} +\frac{v_{2}^{2} }{2g} +h_{2} )\\P_{1} =P_{2} \\v_{1}=0\\h_{2} =0\\v_{2}=\sqrt{0.54*9.81*2}\\v_{2}=3.25[m/s]](https://tex.z-dn.net/?f=%28P_%7B1%7D%20%2B%5Cfrac%7Bv_%7B1%7D%5E%7B2%7D%20%7D%7B2g%7D%20%2Bh_%7B1%7D%20%29%3D%28P_%7B2%7D%20%2B%5Cfrac%7Bv_%7B2%7D%5E%7B2%7D%20%7D%7B2g%7D%20%2Bh_%7B2%7D%20%29%5C%5CP_%7B1%7D%20%3DP_%7B2%7D%20%5C%5Cv_%7B1%7D%3D0%5C%5Ch_%7B2%7D%20%3D0%5C%5Cv_%7B2%7D%3D%5Csqrt%7B0.54%2A9.81%2A2%7D%5C%5Cv_%7B2%7D%3D3.25%5Bm%2Fs%5D)
Ideally, if all the magnetic of one winding cuts the other winding, and there isn't any loss in the transformer core or the resistance of the wire, then the voltage across each winding is proportional to the number of turns in its coil.
If you apply 100 V to a winding of 50 turns, then a winding that yields 20 volts
must be wound with
(20/100) of 50 turns = 10 turns
Given that,
Radius of track, r = 50 m
time , t = 9 s
velocity, v = ?
Distance covered by car in one lap around a track is equal to the circumference of the track.
C = 2 π r = 2 * 3.14 * 50
C = 314.159 m
Distance covered by car, s = 314.159 m
Velocity = distance/ time
V = 314.159 / 9
V = 34.9 m/s
The average velocity of car is 34.9 m/s.