Atmosphere, geosphere, cryosphere would be the correct answer I think
Answer: E = 7,490.6 N/C
Explanation:
If we have a field E, and a particle with a charge q, the force that the particle experiences is:
F = E*q
In this case, we know that the force is:
F = 1.2*10^(-15) N
And we know that the particle is a proton, where the charge of a proton is:
q = 1.602*10^(-19) C
Then we can replace these two values in the equation to get:
1.2*10^(-15) N = E*1.602*10^(-19) C
We just need to isolate E.
(1.2*10^(-15) N)/(1.602*10^(-19) C) = E
7,490.6 N/C = E
That is the strength of the electric field.
Answer:
It depends on how you use the spoon...
if you are keeping one end of the spoon and pressing other end, the force you provide is supported by the force due to gravity... Hence it is easy to open this way :)
F + G ... Where F is the force you provide and G is the force due to gravity.
Answer:
Volume, V = 13564.8 cubic feet
Explanation:
It is given that,
Radius of the cylindrical tank, r = 12 feet
Height of the tank, h = 30 feet
We need to find the water that can be held by a cylindrical tank i.e. we need to find the volume of the tank. It is given by :


V = 13564.8 cubic feet
So, the water held by the tank is 13564.8 cubic feet. Hence, this is the required solution.
Answer:
The average velocity is
and
respectively.
Explanation:
Let's start writing the vertical position equation :

Where distance is measured in meters and time in seconds.
The average velocity is equal to the position variation divided by the time variation.
= Δx / Δt = 
For the first time interval :
t1 = 5 s → t2 = 8 s
The time variation is :

For the position variation we use the vertical position equation :

Δx = x2 - x1 = 1049 m - 251 m = 798 m
The average velocity for this interval is

For the second time interval :
t1 = 4 s → t2 = 9 s


Δx = x2 - x1 = 1495 m - 125 m = 1370 m
And the time variation is t2 - t1 = 9 s - 4 s = 5 s
The average velocity for this interval is :

Finally for the third time interval :
t1 = 1 s → t2 = 7 s
The time variation is t2 - t1 = 7 s - 1 s = 6 s
Then


The position variation is x2 - x1 = 701 m - (-1 m) = 702 m
The average velocity is
