<h2>The required "option is b) hydrogen bonds must be broken to raise its temperature.</h2>
Explanation:
- Water has high specific heat due to hydrogen bonds present in it.
- The Ionisation of water does not affect the specific heat of the water.
- On decreasing the temperature, there is the formation of bonds hence option (d) is wrong.
- On increasing the temperature, there is the breaking of bonds hence option (b) is correct.
Mass of copper : 0.165 g
<h3>Further explanation</h3>
Given
5.0 A over 100 seconds
Required
Mass of copper
Solution
Faraday's law:
<em>The mass of the substance formed at each electrode is proportional to the electric current flowing in the electrolysis</em>
<em />
<em />
e = Ar / valence = eqivalent weight
i = current
t = time
W = weight
CuSO₄ ----> Cu²⁺ + SO₄²⁻
Cu ----> Cu²⁺ + 2e
e = Ar/2
= 63,5/2 = 31,75

The waters of the Dead Sea are extremely saline, and, generally, the concentration of salt increases toward the lake's bottom. ... The deep water was saturated with sodium chloride , which precipitated to the bottom.
<span> 2C2H2(g) + 5O2(g) → 4CO2(g) + 2H2O(g)
from the reaction 2 mol 4 mol
from the problem 5.4 mol 10.8 mol
M(CO2) = 12.0 +2*16.0 = 44.0 g/mol
10.8 mol CO2 * 44.0 g CO2/1 mol CO2 = 475.2 g CO2 </span>≈480 = 4.8 * 10² g
Answer is C. 4.8*10² g.
H H
I I
H - C - C - H
l l
H H
A Carbon can only form 4 bonds and a Hydrogen can only form 1 bond.