Answer:
ρ/ρ2 = 3 / R₀ the two densities are different
Explanation:
Density is defined as
ρ = M / V
As the nucleus is spherical
V = 4/3 π r³
Let's replace
ρ = A / (4/3 π R₀³)
ρ = ¾ A / π R₀³
b)
ρ2 = F / area
The area of a sphere is
A = 4π R₀²
ρ2 = F / 4π R₀²
ρ2 = F / 4π R₀²
Atomic number is the number of protons in the nucleon in not very heavy nuclei. This number is equal to the number of neutrons, but changes in heavier nuclei, there are more neutrons than protons.
Let's look for the relationship of the two densities
ρ/ρ2 = ¾ A / π R₀³ / (F / 4π R₀²)
ρ /ρ2 = 3 (A / F) (1 / R₀)
In this case it does not say that the nucleon number is A (F = A), the relationship is
ρ/ρ2 = 3 / R₀
I see that the two densities are different
Answer:
As beams of particles and their associated energy are given off, the pulsar will lose energy slowly, which will decrease the rate of its rotation. The frequency of pulses would therefore decrease, so that fewer pulses are observed in a given time span. The strength of the pulse signal will also decrease so the pulses will become fainter. Eventually, the pulsar should rotate so slowly and have such a low emission of radiation that it would no longer be observable.
<span>Because they occur at an atomic level, changing the actual structure of the thing.
</span>
Answer:
19.99 kg m²/s
Explanation:
Angular Momentum (L) is defined as the product of the moment of Inertia (I) and angular velocity (w)
L = m r × v.
r and v are perpendicular to each other,
where r = lsinθ.
l = 2.4 m
θ= 34°
g = 9.8 m/s² and m = 5 kg
resolving using newtons second law in the vertical and horizontal components.
T cos θ − m g = 0
T sin θ − mw² lsin θ = 0
where T is the force with which the wire acts on the bob
w = √g / lcosθ
= √ 9.8 / 2.4 ×cos 34
= 2.2193 rad/s
the angular momentum L = mr× v
= mw (lsin θ)²
= 5 × 2.2193 (2.4 ×sin 34°)²
=19.99 kg m²/s
Internal energy<span> is defined as the </span>energy<span> associated with the random, disordered motion of molecules. It is denoted by U and calculated by the expression:
</span>Δ<span>U = Q - W
We calculate as follows:
</span>ΔU = 68 J - 32 J
ΔU = 36 J