1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gre4nikov [31]
3 years ago
11

A car, traveling at , encounters a dip in the road. The radius of curvature at the bottom of the dip is . Each of the car’s four

springs has a spring constant of (the spring compresses for every applied to it). Determine the deflection of the springs from their unloaded state when the car is at the bottom of the dip. The weight of the car supported by the springs is . Goal: Find the spring deflection for a car with 4 springs that encounters a dip in the road.
Physics
1 answer:
labwork [276]3 years ago
5 0

Answer:

spring deflection is  x = (v2 / R + g) m / 4

Explanation:

We will solve this problem with Newton's second law. Let's analyze the situation the car goes down a road and finds a dip (hollow) that we will assume that it has a circular shape in the lower part has the car weight, elastic force and a centripetal acceleration

 

Let's write the equations on the Y axis of this description

       Fe - W = m a_{c}

Where Fe is elastic force, W the weight and a_{c}  the centripetal acceleration. The elastic force equation is

       Fe = - k x

     

       4 (k x) - mg = m v² / R

The four is because there are four springs, R is theradio of dip

We can calculate the deflection (x) of the springs

       x = (m v2 / R + mg) / 4

       

       x = (v2 / R + g) m / 4

You might be interested in
The histogram below shows the number of downloads of a song over time.
Allisa [31]

Given data:

  • It is a graphical display where the data is grouped in to ranges
  • A diagram consists rectangles, whose area is proportional to frequency of a variable and whose width is equal to the class interval.
  • It is an accurate representation of the distribution of numerical data.

<em>From Figure:</em>  

        Each box in the graph (small rectangle box) is assumed to be one download. So, in the graph the time between 8 p.m to 9 p.m, the number of downloads are 8.75 approximately (because the last box is incomplete, therefore 8 complete boxes and 9th is more than half).

<em>So, We conclude that the total number of downloads are approximately 9 in the time span of 8 p.m. to 9 p.m.</em>

7 0
3 years ago
Distance versus Displacement Worksheet
Umnica [9.8K]

when we find the distance we will add all the blocks so

distance = 6+6+4

distance = 14blocks

when we find the displacement we will add and minus too

As you can read he goes to the south 6 and to north 6 so he leave that place and back to the place again so the displacement is 0. and again he goes to the west 4 blocks so the displacement = <em><u>4blocks</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>west</u></em>

6 0
3 years ago
Read 2 more answers
Given: Q1 = +10 uc = 1.0 x 10-5C
ser-zykov [4K]

Answer:

-0.038 N

Explanation:

F=K Q1 Q2/r^2 by COULOMB'S LAW

F= 9×10^9×1×10^-5×-1.5×10^-5/(6)^2

F= -0.038 N

5 0
3 years ago
An electron moves at a speed of 1.0 x 104 m/s in a circular path of radius 2 cm inside a solenoid. The magnetic field of the sol
iogann1982 [59]

Answer:

(a) B = 2.85 × 10^{-6} Tesla

(b) I =  I = 0.285 A

Explanation:

a. The strength of magnetic field, B, in a solenoid is determined by;

r = \frac{mv}{qB}

⇒ B = \frac{mv}{qr}

Where: r is the radius, m is the mass of the electron, v is its velocity, q is the charge on the electron and B is the magnetic field

B = \frac{9.11*10^{-31*1.0*10^{4} } }{1.6*10^{-19}*0.02 }

  = \frac{9.11*10^{-27} }{3.2*10^{-21} }

B = 2.85 × 10^{-6} Tesla

b. Given that; N/L = 25 turns per centimetre, then the current, I, can be determined by;

B = μ I N/L

⇒    I = B ÷ μN/L

where B is the magnetic field,  μ is the permeability of free space = 4.0 ×10^{-7}Tm/A, N/L is the number of turns per length.

I = B ÷ μN/L

 = \frac{2.85*10^{-6} }{4*10^{-7} *25}

I = 0.285 A

5 0
3 years ago
A 0.041-kg bullet has a kinetic energy of 600j. What is the velocity of the bullet?
Paladinen [302]

171.0798 M/S

In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s2.

Was this helpful

5 0
3 years ago
Other questions:
  • Two long, parallel wires separated by 5.0 mm each carry a current of 60 A. These two currents are oppositely directed. What is t
    14·2 answers
  • The density of the object on the left is 1.5 g/cm3 and the density of the fluid is 1.0 g/cm3. Which has greater density? The obj
    8·2 answers
  • What is free-fall acceleration on the surface of the moon?
    7·1 answer
  • Which separation method would be most successful in separating the components of a homogeneous mixture? screening evaporation ce
    6·2 answers
  • A lamina occupies the part of the disk x2 + y2 ≤ 49 in the first quadrant. Find the center of mass of the lamina if the density
    5·1 answer
  • Microwaves are sent through a material causing the molecules in the material to twist and vibrate, causing the material to heat
    15·1 answer
  • A 40kg load is raised to a height of 25m. If the operation requires 1 min, find the power required​
    9·1 answer
  • How do y’all solve this
    7·2 answers
  • What do we call fixed point around which a lever pivots?
    10·2 answers
  • Can and object have a negative position and a positive velocity? Or vice versa, a positive position and a negative velocity? Exp
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!