Answer:
reflected angle - secod mirror = 60°
Explanation:
I attached an image with the solution to this problem below.
In the solution the reflection law, incident angle = reflected angle, is used. Furthermore some trigonometric relation is used.
You can notice in the image that the angle of reflection in the second mirror is 60°
Answer:
m = 12.05 kg
Explanation:
Spring constant in K, N/m
K = 200/10* 100
K = 2000 N/m
Angular Frequency = sqrt (Spring constant / (Mass )
ω = 2 π f
ω = 2π* 2.05 Hz = 12.8805 rad/s
ω^2 = Spring constant / Mass
Mass= Spring constant / ω^2
ω^2 = 165.907 rad^2/s^2
m = 2000 (N/m)/165.907 (rad^2/s^2)
m = 12.05 kg
Answer:
377 m
Explanation:
number of turns, N = 65
θ = 36°
B1 = 200 micro Tesla
B2 = 600 micro tesla
t = 0.4 s
induced emf, e = 80 mV
Let a be the side of the square coil.



a = 1.45 m
Total length of the wire, L = N x 4a = 65 x 4 x 1.45 = 377 m
Thus, the length of the wire is 377 m.
Cups
teaspoon
tablespoon
liters
milliliters
gallons
pints
tons
inches
<h3>
Answer:</h3>
1.3 Amps
<h3>
Explanation:</h3>
<u>We are given;</u>
A circuit with resistors, R1 and R2
R1 = 7 Ω
R2 = 11 Ω
Voltage = 24 V
We are required to calculate the current in the circuit.
<h3>Step 1: We need to find the effective resistance.</h3>
When resistors are arranged in series, the effective resistance is calculated by;
Rt = R₁ + R₂ + R₃ + ..........Rₙ
Therefore;
Total resistance = 7 + 11
= 18 Ω
<h3>Step 2: Calculate the current in the circuit</h3>
From the ohm's law;
V = IR
Rearranging the formula;
I = V/R
Thus;
I = 24 V ÷ 18 Ω
= 1.333 Amps
= 1.3 Amps
Thus, the current in the circuit is 1.3 Amps