1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
2 years ago
6

a bal is launched upward with a velocity of v0 from the edge of a cliff of height D. it reaches a maximum height of H above its

launch, then falls back downward and misses the edge of the cliff, landing below, at the bottom of the cliff, with a speed of 4V0. What is the ratio of the cliff height D to the peak height H
Physics
1 answer:
lilavasa [31]2 years ago
3 0

Answer:

D/H =15

Explanation:

  • We can find first the peak height H, taking into consideration, that at the maximum height, the ball will reach momentarily to a stop.
  • At this point, we can find the value of H, applying the following kinematic equation:

       v_{f} ^{2} -v_{0} ^{2} = 2* g* H (1)

  • If vf=0, if we assume that the positive direction is upwards, we can find the value of H as follows:

       H = \frac{v_{0} ^{2} }{2*g} (2)

  • We can use the same equation, to find the value of D, as follows:

        v_{f} ^{2} -v_{1} ^{2} = 2* g* D (3)

  • In order to find v₁, we can use the same kinematic equation that we used to get H, but now, we know that v₀ = 0.
  • When we replace these values in (1), we find that  v₁ = -v₀.
  • Replacing in (3), we have:

        (4*v_{0})^{2} - (-v_{0}) ^{2}  = 2* g* D\\ \\ 15*v_{0}^{2}  = 2*g*D

  • Solving for  D:

       D = \frac{15*v_{0} ^{2} }{2*g}

  • From (2) we know that H can be expressed as follows:

       H = \frac{v_{0} ^{2} }{2*g}

  • ⇒ D = 15 * H

        \frac{D}{H} = 15

You might be interested in
A mass spectrometer is being used to separate common oxygen-16 from the much rarer oxygen-18, taken from a sample of old glacial
Nataly_w [17]

Answer:

0.092 m

Explanation:

A charged moving particle immersed in a region with magnetic field follows a circular trajectory at constant speed (uniform circular motion), since the magnetic forces acts perpendicular to the direction of motion of the particle.

Since the magnetic force acts as centripetal force, we can write:

qvB=m\frac{v^2}{r}

where

q is the charge of the particle

v is its velocity

B is the strength of the magnetic field

m is the mass of the particle

r is the radius of the orbit

Solving the equation for r,

r=\frac{mv}{qB}

For the ion of oxygen-16, we have:

m_A=2.66\cdot 10^{-26}kg

q_A = 1.6\cdot 10^{-19}C (it is singly charged)

v_A=2.90\cdot 10^6 m/s

B_A=1.30 T

So the radius of its orbit is

r_A=\frac{m_A v_A}{q_A B_A}=\frac{(2.66\cdot 10^{-26})(2.90\cdot 10^6)}{(1.6\cdot 10^{-19})(1.30)}=0.371 m

For the ion of oxygen-18, we have:

m_B = \frac{18}{16}m_A = 2.99\cdot 10^{-26}kg

q_B = 1.6\cdot 10^{-19}C (it is singly charged)

v_B=2.90\cdot 10^6 m/s

B_B=1.30 T

So the radius of its orbit is

r_B=\frac{m_B v_B}{q_B B_B}=\frac{(2.99\cdot 10^{-26})(2.90\cdot 10^6)}{(1.6\cdot 10^{-19})(1.30)}=0.417 m

After each ion has travelled a semicircle, the separation between the two ions will be twice the difference in their radius, so:

d=2(r_B-r_A)=2(0.417-0.371)=0.092 m

3 0
3 years ago
Three point charges are arranged on a line. Charge q3 = 5 nC and is at the origin. Charge q2 = - 3 nC and is at x = 4 cm. Charge
Taya2010 [7]

Answer:

q₁ = + 1.25 nC

Explanation:

Theory of electrical forces

Because the particle q₃ is close to two other electrically charged particles, it will experience two electrical forces and the solution of the problem is of a vector nature.

Known data

q₃=5 nC

q₂=- 3 nC

d₁₃=  2 cm

d₂₃ = 4 cm

Graphic attached

The directions of the individual forces exerted by q1 and q₂ on q₃ are shown in the attached figure.

For the net force on q3 to be zero F₁₃ and F₂₃ must have the same magnitude and opposite direction, So,  the charge q₁ must be positive(q₁+).

The force (F₁₃) of q₁ on q₃ is repulsive because the charges have equal signs ,then. F₁₃ is directed to the left (-x).

The force (F₂₃) of q₂ on q₃ is attractive because the charges have opposite signs.  F₂₃ is directed to the right (+x)

Calculation of q1

F₁₃ = F₂₃

\frac{k*q_{1}*q_3 }{(d_{13})^{2}  } = \frac{k*q_{2}*q_3 }{(d_{23})^{2}  }

We divide by (k * q3) on both sides of the equation

\frac{q_{1} }{(d_{13})^{2} } = \frac{q_{2} }{(d_{23})^{2} }

q_{1} = \frac{q_{2}*(d_{13})^{2}   }{(d_{23} )^{2}  }

q_{1} = \frac{5*(2)^{2} }{(4 )^{2}  }

q₁ = + 1.25 nC

3 0
3 years ago
What is the speed of an electron that has been accelerated from rest through a potential difference of 1020 V?
sashaice [31]
<span>a. KE in electron volts is 1020 eV. 
b. KE in Joules is e(1020) = (1.6022E-19)(1020) = 1.634E-16 
c. KE = (1/2)mv^2, so v = sqrt[2*KE/m] = 18.94E6 m/s

note: m is the mass of an electron = 9.109e-31 kg

I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
8 0
3 years ago
Hello guys! Can u please help me with physics. I translated it in English. Can yall help me please how much u can!!
DedPeter [7]

1. Since the body is thrown vertically upward, the only force acting on it as it rises and falls is gravity, which causes a constant downward acceleration with magnitude g = 9.8 m/s². Because this acceleration is constant, we can use the formula

v² - u² = 2a ∆x

where

u = initial speed

v = final speed

a = acceleration

∆x = displacement

At its maximum height, some distance y above the point where the body is launched, the body has zero velocity, so

0² - (20 m/s)² = 2 (-9.8 m/s²) y

Solve for y :

y = (20 m/s)² / (2 (9.8 m/s²)) ≈ 20.4 m

2. Relative to the ground, the body's maximum height is 60 m + 20.4 m ≈ 80.4 m.

3. At any time t ≥ 0, the body's vertical velocity is given by

v = 20 m/s - gt

At the highest point, we have

0 = 20 m/s - (9.8 m/s²) t

and solving for t gives

t = (20 m/s) / (9.8 m/s²) ≈ 2.04 s

4. The body's height y above the ground at any time t ≥ 0 is given by

y = 60 m + (20 m/s) t - 1/2 gt²

Solve for t when y = 0 :

0 = 60 m + (20 m/s) t - 1/2 (9.8 m/s²) t²

Using the quadratic formula,

t = (-b + √(b² - 4ac)) / (2a)

(and omitting the negative root, which gives a negative solution) where a = -1/2 (9.8 m/s²), b = 20 m/s, and c = 60 m. You should end up with

t ≈ 6.09 s

5. At the time found in (4), the body's velocity is

v = 20 m/s - g (6.09 s) ≈ -39.7 m/s

Speed is the magnitude of velocity, so the speed in question is 39.7 m/s.

6 0
3 years ago
A student wants to start a small business in school. Write down six items that
Fiesta28 [93]

Answer:

packets of pen

packets of pencil

copies

books

bottles

mask

3 0
3 years ago
Other questions:
  • What is magnetisim? What things are magnets?
    12·1 answer
  • At what angle North of East must the ship travel to reach its destination? Let East be 0◦ and North 90◦.
    12·1 answer
  • A system releases 680 kj of heat and does 150 kj of work on the surroundings.what is the change in internal energy of the system
    9·1 answer
  • The following 1h nmr absorptions were obtained on a spectrometer operating at 200 mhz and are given in hz downfield from tms. Co
    15·1 answer
  • Two point charges lie on the x axis. A charge of 6.3 μC is at the origin, and a charge of -9.5 μC is at x=10.0cm. Express your a
    9·1 answer
  • What is the speed of a wave that has a frequency of 45 Hz and a wavelength of 0.1 meters?
    14·2 answers
  • Hey can someone please help me and can u show your work plz plz plz plz
    15·1 answer
  • . If the centripetal and thus frictional force between the tires and the roadbed of a car moving in a circular
    5·1 answer
  • Kelly Clarkson is running between the Patronas towers in Kuala Lumpur on a tightrope at a speed of 15 m/s. Kelly currently weigh
    9·2 answers
  • Mass is not volume.<br> True<br> False
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!