Answer:
By conservation of energy, it can climb up to a height equal to that it went down before. However, due to the friction in the machines, the total mechanical energy of the roller coaster will decrease. As a result, the first "hill" of many roller coasters are the highest, but the followings will have decreasing heights.
Explanation:
Explanation:
The expression is :

A =[LT], B=[L²T⁻¹], C=[LT²]
Using dimensional of A, B and C in above formula. So,
![A=B^nC^m\\\\\ [LT]=[L^2T^{-1}]^n[LT^2}]^m\\\\\ [LT]=L^{2n}T^{-n}L^mT^{2m}\\\\\ [LT]=L^{2n+m}T^{2m-n}](https://tex.z-dn.net/?f=A%3DB%5EnC%5Em%5C%5C%5C%5C%5C%20%5BLT%5D%3D%5BL%5E2T%5E%7B-1%7D%5D%5En%5BLT%5E2%7D%5D%5Em%5C%5C%5C%5C%5C%20%5BLT%5D%3DL%5E%7B2n%7DT%5E%7B-n%7DL%5EmT%5E%7B2m%7D%5C%5C%5C%5C%5C%20%5BLT%5D%3DL%5E%7B2n%2Bm%7DT%5E%7B2m-n%7D)
Comparing the powers both sides,
2n+m=1 ...(1)
2m-n=1 ...(2)
Now, solving equation (1) and (2) we get :

Hence, the correct option is (E).
Answer:
λ = 8.716 mm
Explanation:
Given:
- d = 10 cm
- Q >= 5 degrees
Find:
- Find the shortest wavelength of light for which this apparatus is useful
Solution:
- The formula that relates the split difference and angle of separation between successive fringes is given by:
d*sin(Q) = n*λ
Where,
λ: wavelength
d: split separation
Q: angle of separation between successive fringes
m: order number.
- Since this apparatus only shows the first order light so m =1
- the shortest possible wavelength corresponds to:
d*sin(Q) = λ
λ = 0.1*sin(5)
λ = 8.716 mm