150x1000 (turn km into m)
=150000m
150000 / 60 (hour to min)
=2500m/min
2500 / 60 (min to sec)
=41.6666666
=41,1/3 m/s
To solve this problem it is necessary to use the calorimetry principle. From the statement it asks about the remaining ice, that is, to the point where the final temperature is 0 ° C.
We will calculate the melted ice and in the end we will subtract the total initial mass to find out how much mass was left.
The amount of heat transferred is defined by

Where,
m = mass
c = Specific heat
Change in temperature
There are two states, the first is that of heat absorbed by that mass 'm' of melted ice and the second is that of heat absorbed by heat from -35 ° C until 0 ° C is reached.
Performing energy balance then we will have to

Where,
= Heat absorbed by whole ice
= Heat absorbed by mass
= Heat energy by latent heat fusion/melting

Replacing with our values we have that


Rearrange and find m,

Therefore the Ice left would be


Therefore there is 0.079kg ice in the containter when it reaches equilibrium
Answer:
Explanation:
Let the length of inclined plane be L .
work done by gravity on the block
= force x length of path
= mg sinθ x L , m is mass of the block , θ is inclination of path
This in converted into potential energy of compressed spring
1/2 k x² = mgL sin31 , k is force constant . x is compression
.5 x 3400 x .37² = 33 x9.8 x sin31 L
L = 1.4
Length of incline = 1.4 m .
Ask Barry Allen he’s the faster man alive
Energy cannot be created nor be destroyed