Answer:
Part a)

Part b)
v = 3.64 m/s
Part c)

Part d)

Explanation:
As we know that moment of inertia of hollow sphere is given as

here we know that

R = 0.200 m
now we have


now we know that total Kinetic energy is given as





Part a)
Now initial rotational kinetic energy is given as



Part b)
speed of the sphere is given as
v = 3.64 m/s
Part c)
By energy conservation of the rolling sphere we can say




Part d)
Now we know that




Answer:
option b
Explanation:
There is an object pulled inward in an electric field.
We have to find out of the four options given which is true.
a) The object has a neutral charge is false since when electric field pulls the object inward, there is a charge inside.
b) The object has a charge opposite that of the field, this option is correct since there will be an equal and opposite charge created by the object
c) The object has a negative charge will be correct only if the original charge was positive hence wrong
d) The object has a charge the same as that of the field is incorrect since this would be opposite the charge
So only option b is right
Answer:
Both Technician A and Technician B
Explanation:
In order to gain a better understanding of the solution above let define some terms
Break Accumulator
We can define a break accumulator as storage that that helps generate the required pressure in order for the breaking system to respond faster this accumulator is charged by turning the steering wheel slowly at once from lock to lock now this build the pressure in the accumulator and one way to depressurize is it is by turning the ignition switch ""off""
Now a scan tool is a device that can interface with a car it can also be used to diagnose a car an get the diagnostic information to help in the cars diagnoses and also be used to reprogram a car
According to the <u>Third Kepler’s Law of Planetary motion</u> “<em>The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
<h2>

(1)
</h2>
Where;
is the Gravitational Constant and its value is 
is the mass of Jupiter
is the semimajor axis of the orbit Io describes around Jupiter (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
<h2>

(2)
</h2>
Then:
<h2>

(3)
</h2>
Which is the same as:
<h2>

</h2>
Therefore, the answer is:
The orbital period of Io is 42.482 h
Answer:
The correct option is b) In galaxy clusters
Explanation:
A type of galaxy that appear elliptical in shape and have an almost featureless and smooth image is known as the elliptical galaxy.
An elliptical galaxy is three dimensional and consists of more than one hundred trillion stars which are present in random orbits around the centre.
Elliptical galaxy is generally found in the galaxy clusters.