Answer:
body position 4 is (-1,133, -1.83)
Explanation:
The concept of center of gravity is of great importance since in this all external forces are considered applied, it is defined by
x_cm = 1 /M ∑
m_{i}
y_cm = 1 /M ∑ y_{i} mi
Where M is the total mass of the body, mi is the mass of each element
give us the mass and position of this masses
body 1
m1 = 2.00 ka
x1 = 0 me
y1 = 0 me
body 2
m2 = 2.20 kg
x2 = 0m
y2 = 5 m
body 3
m3 = 3.4 kg
x3 = 2.00 m
y3 = 0
body 4
m4 = 6 kg
x4=?
y4=?
mass center position
x_cm = 0
y_cm = 0
let's apply to the equations of the initial part
X axis
M = 2.00 + 2.20 + 3.40
M = 7.6 kg
0 = 1 / 7.6 (2 0 + 2.2 0 + 3.4 2 + 6 x4)
x4 = -6.8 / 6
x4 = -1,133 m
Axis y
0 = 1 / 7.6 (2 0 + 2.20 5 +3.4 0 + 6 y4)
y4 = -11/6
y4 = -1.83 m
body position 4 is (-1,133, -1.83)
Around -3.5 ( might not be completely right ) Frank has a greater mass to he has a low velocity at first, Dion is around half of his weight so he doesn’t have to use as much force to get more than Frank
Answer:
1028 slits/mm
Explanation:
We are given that
Wavelength of light, 
1nm=

n=1
We have to find the number of slits per mm are marked on the grating.
We know that

Using the formula



1m=
mm

Number of slits=
Number of slits=
/mm
Number of slits=1028/mm
Hence, 1028 slits/mm are marked on the grating.
Answer:
V2 = 1.33m/s
Explanation:
M1 = 30 ton
M2 = 90 ton
V1 = 4 m/s
V2 = ?
Assumption: momentum conserved, no friction
initial momentum = final momentum = 0
momentum : p = MV
(M1*V1) - (M2*V2) = 0
V2 = (30*4)/90 = 1.33m/s