Answer
given,
heat added to the gas,Q = 3300 kcal
initial volume, V₁ = 13.7 m³
final volume, V₂ = 19.7 m³
atmospheric pressure, P = 1.013 x 10⁵ Pa
a) Work done by the gas
W = P Δ V
W = 1.013 x 10⁵ x (19.7 - 13.7)
W = 6.029 x 10⁵ J
b) internal energy of the gas = ?
now,
change in internal energy
Δ U = Q - W
Q = 3300 x 10³ cal
Q = 3300 x 10³ x 4.186 J
Q = 1.38 x 10⁷ J
now,
Δ U = 1.38 x 10⁷ - 6.029 x 10⁵
Δ U = 1.32 x 10⁷ J
Answer:
Explanation:
Potential energy on the surface of the earth
= - GMm/ R
Potential at height h
= - GMm/ (R+h)
Potential difference
= GMm/ R - GMm/ (R+h)
= GMm ( 1/R - 1/ R+h )
= GMmh / R (R +h)
This will be the energy needed to launch an object from the surface of Earth to a height h above the surface.
Extra energy is needed to get the same object into orbit at height h
= Kinetic energy of the orbiting object at height h
= 1/2 x potential energy at height h
= 1/2 x GMm / ( R + h)
<h2>
Spring constant is 14.72 N/m</h2>
Explanation:
We have for a spring
Force = Spring constant x Elongation
F = kx
Here force is weight of mass
F = W = mg = 0.54 x 9.81 = 5.3 N
Elongation, x = 36 cm = 0.36 m
Substituting
F = kx
5.3 = k x 0.36
k = 14.72 N/m
Spring constant is 14.72 N/m
Answer:
4086 J
Explanation:
The potential energy is transformed to kinetic energy less the frictional energy. Potential energy= mgh where m represent mass, g is acceleration due to gravity and h is the height of cliff
Since we have force of air resistance, work done due to air resistance will be product of force and distance

Substituting 10 Kg for m, 9.81 for g and 60 m for F then the kinetic energy at the bottom will be
KE= 10*9.81*60- (30*60)=4086 J