<h2>
Answer: 56.718 min</h2>
Explanation:
According to the Third Kepler’s Law of Planetary motion<em> </em><em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
(1)
Where;
is the Gravitational Constant and its value is
is the mass of Mars
is the semimajor axis of the orbit the spacecraft describes around Mars (assuming it is a <u>circular orbit </u>and a <u>low orbit near the surface </u>as well, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
(2)
(3)
(4)
Finally:
This is the orbital period of a spacecraft in a low orbit near the surface of mars
Answer:
(a) 0.71 mm
(b) 0.158 cubic cm
Explanation:
The width of one wire is the diameter of the wire.
(a) Let the diameter of each wire is d.
So, 10 d = 14.2 mm
d = 1.42 mm
radius of each wire, r = d/2 = 1.42/2 = 0.71 mm
(b) Length, L = 10 cm
The volume of the single wire is given by

Answer:
plz mark me as brainliest plz
Explanation:
The gravitational force of the earth keeps us bound to the earth. Gravitational force between earth and sun makes the earth move around the sun. Gravitational force between moon and earth makes the moon go around the earth.
Answer:
period of oscillations is 0.695 second
Explanation:
given data
mass m = 0.350 kg
spring stretches x = 12 cm = 0.12 m
to find out
period of oscillations
solution
we know here that force
force = k × x .........1
so force = mg = 0.35 (9.8) = 3.43 N
3.43 = k × 0.12
k = 28.58 N/m
so period of oscillations is
period of oscillations = 2π ×
................2
put here value
period of oscillations = 2π ×
period of oscillations = 0.6953
so period of oscillations is 0.695 second
<span>In the labeled portion of the curve ,you use the heat of vaporization to calculate the heat absorbed in the 4th portion. It is indicated in the picture that it is the region where vaporization occurs, that is why you need to consider this portion to calculate.</span>