1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mamaluj [8]
2 years ago
9

The total energy of a block—spring system is 0.18 J. The amplitude is 14.0 cm and the maximum speed is 1.25 m/s. Find: (a) the m

ass; (b) the spring constant; (c) the frequency; (d) the speed when the displacement from equilibrium is 7.00 cm.
Physics
1 answer:
algol132 years ago
3 0

a) The mass is 0.23 kg

b) The spring constant is 1.25 N/m

c) The frequency is 1.42 Hz

d) The speed of the block is 1.08 m/s

Explanation:

a)

We can find the mass of the block by applying the law of conservation of energy: in fact, the total mechanical energy of the system (which is sum of elastic potential energy, PE, and kinetic energy, KE) is constant:

E=PE+KE=const.

The potential energy is given by

PE=\frac{1}{2}kx^2

where k is the spring constant and x is the displacement. When the block is crossing the position of equilibrium, x = 0, so all the energy is kinetic energy:

E=KE_{max}=\frac{1}{2}mv_{max}^2 (1)

where

m is the mass of the block

v_{max}=1.25 m/s is the maximum speed

We also know that the total energy is

E=0.18 J

Re-arranging eq.(1), we can find the mass:

m=\frac{2E}{v_{max}^2}=\frac{2(0.18)}{(1.25)^2}=0.23 kg

b)

The maximum speed in a spring-mass system is also given by

v_{max} =\sqrt{\frac{k}{m}} A

where

k is the spring constant

m is the mass

A is the amplitude

Here we have:

v_{max}=1.25 m/s is the maximum speed

m = 0.23 kg is the mass

A = 14.0 cm = 0.14 m is the amplitude

Solving for k, we find the spring constant

k=\frac{v_{max}^2}{A^2}m=\frac{1.25^2}{0.14^2}(0.23)=18.3 N/m

c)

The frequency in a spring-mass system is given by

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k is the spring constant

m is the mass

In this problem, we have:

k = 18.3 N/m is the spring constant (found in part b)

m = 0.23 kg is the mass (found in part a)

Substituting and solving for f, we find the frequency of the system:

f=\frac{1}{2\pi}\sqrt{\frac{18.3}{0.23}}=1.42 Hz

d)

We can solve this part by using the law of conservation of energy; in fact, we have

E=PE+KE=\frac{1}{2}kx^2 + \frac{1}{2}mv^2

Where v is the speed of the system when the displacement is equal to x.

We know that the total energy of the system is

E = 0.18 J

Also we know that

k = 18.3 N/m is the spring constant

m = 0.23 kg is the mass

Substituting

x = 7.00 cm = 0.07 m

We can solve the equation to find the corresponding speed v:

v=\sqrt{\frac{2E-kx^2}{m}}=\sqrt{\frac{2(0.18)-(18.3)(0.07)^2}{0.23}}=1.08 m/s

#LearnwithBrainly

You might be interested in
A transport plane travelling at a steady speed of 132 ms and an altitude of 113 m, releases a parcel when it is directly above a
Crank

Answer:

what time you thinking. about coming down to take a break and ok I will get to?. that was a right answer?

7 0
3 years ago
At what speed should a ball of mass 2 kg be rolled in order to reach the other side of
Veronika [31]

Answer:

M g H = 1/2 M v^2       potential energy = kinetic energy

v^2 = 2 g H = 2 * 9.80 * 6 = 117.6 m/s^2

v = 10.8 m/s    

(C)

6 0
1 year ago
Can someone help me with this question
monitta

Answer:

hypothesis , hope it helps

Explanation:

7 0
3 years ago
Read 2 more answers
A box with a mass of 18 kg is pushed across the floor. It has coefficient of friction of 0.39. Calculate the force of friction i
Taya2010 [7]

Answer:

68.8 N

Explanation:

From the question given above, the following data were obtained:

Mass (m) of box = 18 Kg

Coefficient of friction (μ) = 0.39

Force of friction (F) =?

Next, we shall determine the normal force of the box. This is illustrated below:

Mass (m) of object = 18 Kg

Acceleration due to gravity (g) = 9.8 m/s²

Normal force (N) =?

N = mg

N = 18 × 9.8

N = 176.4 N

Finally, we shall determine the force of friction experienced by the object. This is illustrated below:

Coefficient of friction (μ) = 0.39

Normal force (N) = 176.4 N

Force of friction (F) =?

F = μN

F = 0.39 × 176.4

F = 68.796 ≈ 68.8 N

Thus, the box experience a frictional force of 68.8 N.

3 0
2 years ago
3.
Ivan

Answer:

car B will be 30 Km ahead of car A.

Explanation:

We'll begin by calculating the distance travelled by each car. This is illustrated below:

For car A:

Speed = 40 km/h

Time = 3 hours

Distance =?

Speed = distance / time

40 = distance / 3

Cross multiply

Distance = 40 × 3

Distance = 120 Km

For car B:

Speed = 50 km/h

Time = 3 hours

Distance =?

Speed = distance / time

50 = distance / 3

Cross multiply

Distance = 50 × 3

Distance = 150 Km

Finally, we shall determine the distance between car B an car A. This can be obtained as follow:

Distance travelled by car B (D₆) = 150 Km

Distance travelled by car A (Dₐ) = 120 Km

Distance apart =?

Distance apart = D₆ – Dₐ

Distance apart = 150 – 120

Distance apart = 30 Km

Therefore, car B will be 30 Km ahead of car A.

7 0
3 years ago
Other questions:
  • Which BEST compares the motions of dots C and D?
    5·2 answers
  • What is an example of electrons moving?
    6·1 answer
  • Imagine that a hypothetical life form is discovered on our moon and transported to Earth. On a hot day, this life form begins to
    6·1 answer
  • a sound wave is determined to have a frequency of 1,000 hz and wavelength of 35cm. what is the speed of this wave?
    7·1 answer
  • A small metal sphere weighs 0.34 N in air and has a volume of 13 cm3 . What is the acceleration of the sphere as it falls throug
    14·1 answer
  • Using average rates of money growth and inflation in the United States over many decades, Friedman and Schwartz found that decad
    13·1 answer
  • 1.
    14·2 answers
  • A ball thrown in the air will never go as far as physics ideally would predict because?
    5·1 answer
  • Find the speed of a wave (in meters/second) whose wavelength is 4 meters and
    8·1 answer
  • How does a thermal mass store energy
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!