Answer
given,
intial velocity = 504 mph
wind speed = 219 mph
at an angle of 29◦
from the data
The resultant velocity =



the magnitude of velocity

V = 703.59 m/s
direction
tan θ = 
θ = 8.676°
<h3><u>Answer</u>;</h3>
= F0 L ( 1 - 1/e )
<h3><u>Explanation;</u></h3>
Work done is given as the product of force and distance.
In this case;
Work done = ∫︎ F(x) dx
= F0 ∫︎ e^(-x/L) dx
= F0 [ -L e^(-x/L) ] between 0 and L
= F0 L ( 1 - 1/e )
Yes, but it's a null vector .So,no vector can have a component at right angle to itself unless it is a zero vector.
the missing force is spring force.
The object is hanging from the spring and the spring is stretched by some distance from its equilibrium position. due to this stretch in the spring , a spring force starts acting on the object trying to regain its equilibrium position.
the spring force is given as
F = kx
where F = spring force ,k = spring constant , x = stretch in the spring.
the spring force balances the weight of the object in down direction and hence keeps the block from falling down.