42.9°
Explanation:
Let's assume that the x-axis is aligned with the incline and the positive direction is up the incline. We can then apply Newton's 2nd law as follows:


Note that the net force is zero because the block is moving with a constant speed when the angle of the incline is set at
Solving for the angle, we get

or

![\;\;\;= \sin^{-1}\left[\dfrac{34\:\text{N}}{(5.1\:\text{kg})(9.8\:\text{m/s}^2)}\right]](https://tex.z-dn.net/?f=%5C%3B%5C%3B%5C%3B%3D%20%20%5Csin%5E%7B-1%7D%5Cleft%5B%5Cdfrac%7B34%5C%3A%5Ctext%7BN%7D%7D%7B%285.1%5C%3A%5Ctext%7Bkg%7D%29%289.8%5C%3A%5Ctext%7Bm%2Fs%7D%5E2%29%7D%5Cright%5D)

A 'displacement' always consists of a magnitude and a direction. The two cars you just described have displacements with the same magnitude ... 5 km. But if they didn't both drive in the same direction, then their displacements are different.
Remember:
-- 10 m/s² up and 10 m/s² down are different accelerations
-- 30 mph East and 30 mph West are the same speed but different velocity.
-- 5 km North and 5 km South are the same distance but different displacement.
A convex mirror makes a reflected light rays spread out.
1) newton of the surfaces in contact (the smoothness of the surfaces)
2) how hard the surfaces press together