Answer:
D. creates radioactive waste.
Explanation:
Nuclear energy can create nuclear radioactive waste
Answer:
the average force 11226 N
Explanation:
Let's analyze the problem we are asked for the average force, during the crash, we can find this from the impulse-momentum equation, but this equation needs the speeds and times of the crash that we could look for by kinematics.
Let's start looking for the stack speeds, it has a free fall, from rest (Vo=0)
Vf² = Vo² - 2gY
Vf² = 0 - 2 9.8 7.69 = 150.7
Vf = 12.3 m / s
This is the speed that the battery likes when it touches the beam. They also give us the distance it travels before stopping, let's calculate the time
Vf = Vo - g t
0 = Vo - g t
t = Vo / g
t = 12.3 / 9.8
t = 1.26 s
This is the time to stop
Now let's use the equation that relates the impulse to the amount of movement
I = Δp
F t = pf-po
The amount of final movement is zero because the system stops
F = - po / t
F = - mv / t
F = - 1150 12.3 / 1.26
F = -11226 N
This is the average force exerted by the stack on the vean
Answer:

Given:
Force = 8 N
Distance covered by the body = 50 cm = 0.5 m
Explanation:
Work Done = Force × Distance covered by the body
= 8 × 0.5
= 4 J
<span>To find the acceleration we are given two facts to begin. The impact at 16 km/h and the dent of 6.4 cm, or 0.064 meters. In solving the problem uniform acceleration is assumed, which would mean the avg speed during the impact was 8 km/hr by taking 16/2. We know distance = rate*time (d=r*t) . So t = d / r, so 0.64/8 = 0.008hr for t. Now we can solve for acceleration by taking a = 16 / 0.008 = 2000 km/hr.</span>