Pressure is the amount of force exerted on an object and force is strength or energy of an action
Answer:
the density of mobile electrons in the material is 3.4716 × 10²⁵ m⁻³
Explanation:
Given the data in the question;
we make use of the following expression;
hall Voltage VH = IB / ned
where I = 2.25 A
B = 0.685 T
d = 0.107 mm = 0.107 × 10⁻³ m
e = 1.602×10⁻¹⁹ C
VH = 2.59 mV = 2.59 × 10⁻³ volt
n is the electron density
so from the form; VH = IB / ned
VHned = IB
n = IB / VHed
so we substitute
n = (2.25 × 0.685) / ( 2.59 × 10⁻³ × 1.602×10⁻¹⁹ × 0.107 × 10⁻³ )
n = 1.54125 / 4.4396226 × 10⁻²⁶
n = 3.4716 × 10²⁵ m⁻³
Therefore, the density of mobile electrons in the material is 3.4716 × 10²⁵ m⁻³
Slow-twitch<span> muscles help enable long-endurance feats such as distance running.
</span>fast-twitch<span> muscles fatigue </span>faster<span> but are used in powerful bursts of movements like sprinting.</span>
Answer:
5 meters per second
Explanation:
5m is the distance
5m west is the vector
5m per second is the velocity
5m per second west is unknown
Answer:
The maximum height of the ball is 2 m.
Explanation:
Given that,
Mass of ball = 50 g
Height = 1.0 m
Angle = 30°
The equation is

We need to calculate the velocity
Using conservation of energy

Here, ball at rest so initial kinetic energy is zero and at the bottom the potential energy is zero

Put the value into the formula

Put the value into the formula




We need to calculate the maximum height of the ball
Using again conservation of energy

Here, h = y highest point
Put the value into the formula



Put the value of y in the given equation




Hence, The maximum height of the ball is 2 m.