Answer:
Q = 836.4 Joules.
Explanation:
Given the following data;
Mass = 100 grams
Initial temperature = 25°C
Final temperature = 45°C
We know that the specific heat capacity of water is equal to 4.182 J/g°C.
To find the quantity of heat;
Heat capacity is given by the formula;
Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of water.
dt represents the change in temperature.
dt = T2 - T1
dt = 45 - 25
dt = 20°C
Substituting the values into the equation, we have;
Q = 836.4 Joules.
Answer: 3.84dB
Explanation:
Since person A is talking 1.2dB louder than B, we will have
A = 1.2B... (1)
Similarly, person C is talking 3.2 dB louder than person A, we have
C = 3.2A... (2)
From equation 1, B = A/1.2... (3)
To get the ratio of the sound intensity of person C to the sound intensity of person B, we will divide equation 2 by 3 to give
C/B = 3.2A/{A/1.2}
C/B = 3.2A×1.2/A
C/B = 3.2×1.2
C/B = 3.84dB
Answer:
Its duration is 1.85*10⁻³ s or 1.85 ms
Explanation:
The intensity of electric current I is defined as the amount of electric charge Q (measured in Coulombs) that passes through a section of a conductor in each unit of time. The letter I is used to name the Intensity and its unit is the Ampere (A).
The intensity of electric current is expressed as:

where:
I: Intensity expressed in Amps (A)
Q: Electric charge expressed in Coulombs (C)
t: Time expressed in seconds (s)
Being:
Replacing:

Solving:
19500 A*t= 36 C

t= 1.85*10⁻³ s= 1.85 ms (being 1 s= 1,000 ms)
<u><em>Its duration is 1.85*10⁻³ s or 1.85 ms</em></u>
1) v = gt = 10*1.5 = 15 m/s
2) r = gt^2 /2 = 10*(1.5)^2 / 2 = 11.25 meters
Hello There!
There are 5,280 feet in 1 mile.
Have A Great Day!