Answer:
Very hot during the day and very cold at night.
Explanation:
Due to the thin atmosphere, they have very hot climate during the day time and very cold climate at night. This happens because they contain very low amounts of greenhouse gases. These gases retain the heat at night. The atmosphere also prevents excessive light and UV rays from entering. The thin atmosphere leads to many asteroids and comets hitting the surface of the planet. On earth, these asteroids usually, burn up in the mesosphere layer of the atmosphere. These asteroid collisions cause massive fires. This in turn, causes the temperature to increase during the day. During the night time, massive fires cannot burn due to the low temperature because of the lack of greenhouse gases.
Answer:
F = 0.78[N]
Explanation:
The given values correspond to forces, we must remember or take into account that the forces are vector quantities, that is, they have magnitude and direction. Since we have two X-Y coordinate axes (two-dimensional), we are going to decompose each of the forces into the X & y components.
<u>For F₁</u>
<u />
<u />
<u>For F₂</u>
![F_{x}=2*cos(60)\\F_{x}=1[N]\\F_{y}=-2*sin(60)\\F_{y}=-1.73[N]](https://tex.z-dn.net/?f=F_%7Bx%7D%3D2%2Acos%2860%29%5C%5CF_%7Bx%7D%3D1%5BN%5D%5C%5CF_%7By%7D%3D-2%2Asin%2860%29%5C%5CF_%7By%7D%3D-1.73%5BN%5D)
<u>For F₃</u>
<u />
<u />
Now we can sum each one of the forces in the given axes:
![F_{x}=1-0.866=0.134[N]\\F_{y}=2-1.73+0.5\\F_{y}=0.77[N]](https://tex.z-dn.net/?f=F_%7Bx%7D%3D1-0.866%3D0.134%5BN%5D%5C%5CF_%7By%7D%3D2-1.73%2B0.5%5C%5CF_%7By%7D%3D0.77%5BN%5D)
Now using the Pythagorean theorem we can find the total force.
![F=\sqrt{(0.134)^{2} +(0.77)^{2}}\\F= 0.78[N]](https://tex.z-dn.net/?f=F%3D%5Csqrt%7B%280.134%29%5E%7B2%7D%20%2B%280.77%29%5E%7B2%7D%7D%5C%5CF%3D%200.78%5BN%5D)
Answer:
1 kg lead to earth is greater attraction as mass of earth is much more than 1kg lead.
Explanation:
Objects with more mass have more gravity. Gravity also gets weaker with distance. So, the closer objects are to each other, the stronger their gravitational pull is. Earth's gravity comes from all its mass
What will happen if the sample is the
Featured snippet from the web
When a sample of solid, liquid, or gas matter heats up, it expands. When matter gets hot, its particles gain kinetic energy. ... When matter cools down, its particles lose kinetic energy. The decreased kinetic energy lets the particles come closer together. The kinetic theory of matter can be used to explain how solids, liquids and gases are interchangeable as a result of increase or decrease in heat energy. ... If it is cooled the motion of the particles decreases as they lose energy.
Explanation:
Assuming we can turn on the lightbulb from any distance with a device. We can gradually increase the distance that separates us from lightbulb, in this way, if the speed of light is finite we can see a temporary delay between the moment we turn on the lightbulb and the moment in which we observe its light.