Answer:
A. Yes, Amanda find the number of moles of NaCl correctly.
B. 0.73 M.
Explanation:
<em>A. Did Amanda find the number of moles of NaCl correctly? If not, explain.
</em>
-
Yes, Amanda find the number of moles of NaCl correctly.
- The relation to find the no. of moles of NaCl is:
<em>No. of moles (n) of NaCl = mass/molar mass.</em>
mass of NaCl = 32.0 g, molar mass of NaCl = 58.45 g/mol.
∴ No. of moles (n) of NaCl = mass/molar mass = (32.0 g)/(58.45 g/mol) = (32.0 g NaCl)*(1 mol of NaCl)/(58.45 g NaCl) = 0.547 mol ≅ 0.55 mol.
<em>B. What does Amanda need to do next to calculate the molarity of the NaCl solution? Show your work for full credit.</em>
<em></em>
- Molarity is the no. of moles of solute dissolved in a 1.0 liter of a solution.
∴ M = (no. of moles of NaCl)/(volume of solution (L)) = (0.55 mol)/(0.75 L) = 0.73 M.
Answer:
-2
Explanation:
Consider object is starting 12 units right from the reference point which is 0.
Assign the right direction positive sign.
when object is moving 14 units on left direction the position of object will be two units to the left side of reference point.
Assign the left direction negative sign position will be -2.
<span>The notation is not written in the correct order as the 4s subshell should appear before the 3d subshell.
</span>The correct order in an electron configuration would be:
1s , 2s , 2p , 3s , 3p , 4s , 3d , 4p , 5s , 4d , 5p , 6s , 4f , 5d , 6p ,..
So, for germanium the electronic configuration should be;
1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p²