Answer:
is the name of your school alpha omega, because i recogize the bottom of the page
Step-by-step explanation:
Answer:
- x = arcsin(√20.5 -3√2) +2kπ . . . k any integer
- x = π - arcsin(√20.5 -3√2) +2kπ . . . k any integer
Step-by-step explanation:
Add √(82) -3sin(x) to both sides to get ...
2sin(x) = √82 -√72
Now, divide by 2 and find the arcsine:
sin(x) = (√82 -√72)/2
x = arcsin((√82 -√72)/2)
Of course, the supplement of this angle is also a solution, along with all the aliases of these angles.
___
In degrees, the solutions are approximately 16.562° and 163.438° and integer multiples of 360° added to these.
Answer:
x=24/7
Step-by-step explanation:
3(x+2)+4(x-5)=10
3x+6+4(x-5)=10
3x+6+4x-20=10
7x+6-20=10
7x-14=20
7x=24
x=24/7
![\boxed{pd\sqrt[4]{48p^3d}}](https://tex.z-dn.net/?f=%5Cboxed%7Bpd%5Csqrt%5B4%5D%7B48p%5E3d%7D%7D)
<h2>
Explanation:</h2>
Here we have the following expression:
![\sqrt[4]{48p^7d^5}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B48p%5E7d%5E5%7D)
So we need to simplify it:
![\sqrt[4]{48p^7d^5} \\ \\ \\ We \ can \ write: \\ \\ p^7=p^4\cdot p^3 \\ \\ d^5=d^4\cdot d \\ \\ \\ So: \\ \\ \sqrt[4]{48p^4\cdot p^3\cdot d^4\cdot d} \\ \\ \\ By \ property: \\ \\ \sqrt[n]{x^n}=x \\ \\ \\ Finally: \\ \\ \boxed{pd\sqrt[4]{48p^3d}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B48p%5E7d%5E5%7D%20%5C%5C%20%5C%5C%20%5C%5C%20We%20%5C%20can%20%5C%20write%3A%20%5C%5C%20%5C%5C%20p%5E7%3Dp%5E4%5Ccdot%20p%5E3%20%5C%5C%20%5C%5C%20d%5E5%3Dd%5E4%5Ccdot%20d%20%5C%5C%20%5C%5C%20%5C%5C%20So%3A%20%5C%5C%20%5C%5C%20%5Csqrt%5B4%5D%7B48p%5E4%5Ccdot%20p%5E3%5Ccdot%20d%5E4%5Ccdot%20d%7D%20%5C%5C%20%5C%5C%20%5C%5C%20By%20%5C%20property%3A%20%5C%5C%20%5C%5C%20%5Csqrt%5Bn%5D%7Bx%5En%7D%3Dx%20%5C%5C%20%5C%5C%20%5C%5C%20Finally%3A%20%5C%5C%20%5C%5C%20%5Cboxed%7Bpd%5Csqrt%5B4%5D%7B48p%5E3d%7D%7D)
<h2>Learn more:</h2>
Mathematical expressions: brainly.com/question/14200575#
#LearnWithBrainly
Answer:
0.01 weeks
Step-by-step explanation:
1 min=60sec
1hr=3600sec
1 day = 86400sec
1 week= 604800sec
Therefore answer is 6200/604800= 0.01(approximated)