Sodium chloride (NaCl), whose only changes about 5g/100mL water over that entire range 100°C)
Answer:
The pressure of the gas increased (if temperature remained constant).
The Boyle's law supports this observation.
Explanation:
The initial measurements of the gas are given as;
volume = 100 L
Pressure = 300 kpa
The second measurement is given as;
Volume = 75 L
The second reading implies that the volume of the gas has decreased. If the temperature of the gas remained constant, then the pressure must have increased according to the Boyle's law;
At constant temperature, the pressure of a given mass of an ideal gas is inversely proportional to its volume.
Answer:
86.3 g of N₂ are in the room
Explanation:
First of all we need the pressure from the N₂ in order to apply the Ideal Gases Law and determine, the moles of gas that are contained in the room.
We apply the mole fraction:
Mole fraction N₂ = N₂ pressure / Total pressure
0.78 . 1 atm = 0.78 atm → N₂ pressure
Room temperature → 20°C → 20°C + 273 = 293K
Let's replace data: 0.78 atm . 95L = n . 0.082 . 293K
(0.78 atm . 95L) /0.082 . 293K = n
3.08 moles = n
Let's convert the moles to mass → 3.08 mol . 28g /1mol = 86.3 g
Answer:
1st Question: A
2nd Question: B
Explanation:
The 1st answer would be A because if a sample is at absolute zero then the sample is at its lowest temperature none of the molecules would be able to move, this is because lower temperature= lower kinetic energy.
The 2nd answer would be B because if a sample has more temperature it speeds up it has more temperature and more kinetic energy, meaning it would move faster because there is more temperature.