The perimeter of a rectangle is given by the following formula: P = 2W + 2L
To solve this formula for W, the goal is to isolate this variable to one side of the equation such that the width of the rectangle (W) can be solved when given its perimeter (P) and length (L).
P = 2W + 2L
subtract 2L from both sides of the equation
P - 2L = 2W + 2L - 2L
P - 2L = 2W
divide both sides of the equation by 2
(P - 2L)/2 = (2W)/2
(P - 2L)/2 = (2/2)W
(P - 2L)/2 = (1)W
(P - 2L)/2 = W
Thus, given that the perimeter (P) of a rectangle is defined by P = 2W + 2L ,
then its width (W) is given by <span>W = (P - 2L)/2</span>
Answer:
3 strain would still alive after 48 hours
Step-by-step explanation:
Initial population of virus = 40000 grams
A certain virus is dying off at a rate of 18% per hour.
We are supposed to find how much of the strain would still be alive after 48 hours
Formula : 
=Initial population
N(t)= Population after t hours
r = rate of decrease = 18% = 0.18
t = time = 48 hours
So,the strain would still be alive after 48 hours=
Hence 3 strain would still alive after 48 hours
Answer:The answer is 231
Step-by-step explanation: