The statement which correctly describe the relationship between the reactants and the yield is this: 'the theoretical yield is calculated from the amount of the limiting reactants present'. The theoretical yields is the ideal maximum amount of a product that can be produced during a chemical reaction while the limiting reactant is the reactant that determines the maximum amount of product that can be formed.
A volcanic <em>eruption</em> occurs when the <em>pressure </em> in a magma <em>chamber</em> becomes so great it is released like a valve. Magma is released through the volcano's <em>cone</em> in an eruption of <em>lava</em> rocks (bombs) and ash. A volcanic <em>cone</em> develops over centuries as flowing <em>lava</em> from the active volcano <em>cools </em>to form layers of rock.
Hope this works,
Ahawk
Answer: Option (4) is the correct answer.
Explanation:
It is known that equilibrium constant is represented as follows for any general reaction.

K = ![\frac{[C][D]}{[A][B]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BC%5D%5BD%5D%7D%7B%5BA%5D%5BB%5D%7D)
As equilibrium constant is directly proportional to the concentration of products so more is the value of equilibrium constant more will be the number of products formed.
As a result, more is the time taken by the reaction to reach towards equilibrium. Whereas smaller is the value of equilibrium constant more rapidly it will reach towards the equilibrium.
Thus, we can conclude that cases where K is a very small number will require the LEAST time to arrive at equilibrium.
In this solution the solvent is water and the solutes are sugar, artificial flavor and artificial color. Another interesting property of solutions is that different concentrations of solute can be made. As all of you are aware, you can make very sweet Kool Aid and less sweet Kool Aid.
Answer:
Si is reduced since it loses the oxygen atom