Earth is the right distance from the sun. It’s protected from harmful solar radiation by its magnetic field and the atmosphere keeps it warm. Earth contains the right chemical ingredients to sustain life such as H2O (water) and C (carbon)
Answer:
5 1 2 4and 3 this is correct way
Energy is invisible yet it's all around us and throughout the universe. Energy can never be made or destroyed, but its form can be converted and changed.
While energy can be transferred or transformed, the total amount of energy does not change – this is called energy conservation.
Energy transformation, also known as energy conversion, is the process of changing energy from one form to another. In physics, energy is a quantity that provides the capacity to perform work or provides heat.
When energy is transformed from one form to another, or moved from one place to another, or from one system to another there is energy loss. This means that when energy is converted to a different form, some of the input energy is turned into a highly disordered form of energy, like heat. This consent is known as “hidden energy”.
Oxygen 47 Hydrogen 63
Silicon 28 Oxygen 25.5
Aluminum 7.9 Carbon 9.5
Iron 4.5 Nitrogen 1.4
Calcium 3.5 Calcium 0.31
Sodium 2.5 Phosphorus 0.22
Potassium 2.5 Chlorine 0.03
Magnesium 2.2 Potassium 0.06
Titanium 0.46 Sulfur 0.05
Hydrogen 0.22 Sodium 0.03
Carbon 0.19 Magnesium 0.01
All others <0.1 All others <0.01 Living matter
<u>Answer:</u> The activation energy for the reaction is 40.143 kJ/mol
<u>Explanation:</u>
To calculate activation energy of the reaction, we use Arrhenius equation for two different temperatures, which is:
![\ln(\frac{K_{317K}}{K_{278K}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B317K%7D%7D%7BK_%7B278K%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 317 K = 
= equilibrium constant at 278 K = 
= Activation energy = ?
R = Gas constant = 8.314 J/mol K
= initial temperature = 278 K
= final temperature = 317 K
Putting values in above equation, we get:
![\ln(\frac{3.050\times 10^8}{3.600\times 10^{7}})=\frac{E_a}{8.314J/mol.K}[\frac{1}{278}-\frac{1}{317}]\\\\E_a=40143.3J/mol=40.143kJ/mol](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B3.050%5Ctimes%2010%5E8%7D%7B3.600%5Ctimes%2010%5E%7B7%7D%7D%29%3D%5Cfrac%7BE_a%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B278%7D-%5Cfrac%7B1%7D%7B317%7D%5D%5C%5C%5C%5CE_a%3D40143.3J%2Fmol%3D40.143kJ%2Fmol)
Hence, the activation energy for the reaction is 40.143 kJ/mol