Answer:Negatively charged particle called Free Electrons
Explanation:
Current is the flow of charged particles called Free electrons. Electrons are free to move from one atom to another and we call them a sea of de-localized electrons. In absence of any externally applied emf, these electrons are randomly moving but with the onset of emf, these electrons flow in a particular direction.
Answer:
21
Explanation: its actually 20.85 but i guess they round to 21
Answer:
The answer is 30 degrees.
Explanation:
The angle between the index and pinky fingers is 15 degrees.
Twice this angle is 2×15=30degrees.
Answer:

Explanation:
Given data
Mass m=67.0 kg
Final Speed vf=8.00 m/s
Initial Speed vi=2.00 m/s
Distance d=25.0 m
Force F=30.0 N
From work-energy theorem we know that the work done equals the change in kinetic energy
W=ΔK=Kf-Ki=1/2mvf²-1/2mvi²
And

So

and we know that the force the sprinter exerted Fsprinter the force of the headwind Fwind=30.0N
So
The free-body diagram of the forces acting on the flag is in the picture in attachment.
We have: the weight, downward, with magnitude

the force of the wind F, acting horizontally, with intensity

and the tension T of the rope. To write the conditions of equilibrium, we must decompose T on both x- and y-axis (x-axis is taken horizontally whil y-axis is taken vertically):


By dividing the second equation by the first one, we get

From which we find

which is the angle of the rope with respect to the horizontal.
By replacing this value into the first equation, we can also find the tension of the rope: