Answer:
The Radius is the distance from the center outwards. The Diameter goes straight across the circle, through the center. The Circumference is the distance once around the circle.
The number of C atoms in 0.524 moles of C is 3.15 atoms.
The number of
molecules in 9.87 moles
is 59.43 molecules.
The moles of Fe in 1.40 x
atoms of Fe is 0.23 x 
The moles of
in 2.30x
molecules of
is 3.81.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 ×
of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
A. The number of C atoms in 0.524 mole of C:
6.02214076 ×
x 0.524 mole
3.155601758 atoms =3.155 atoms
B. The number of
molecules in 9.87 moles of
:
6.02214076 ×
x 9.87
59.4385293 molecules= 59.43 molecules
C. The moles of Fe in 1.40 x
atoms of Fe:
1.40 x
÷ 6.02214076 × 
0.2324754694 x
moles.
0.23 x
moles.
D. The moles of
in 2.30x
molecules of
:
2.30x
÷ 6.02214076 × 
3.819239854 moles=3.81 moles
Learn more about moles here:
brainly.com/question/8455949
#SPJ1
Eggshells are made primarily of calcium carbonate. The acid in vinegar softens the calcium of the eggshell. Adding a little vinegar to the water when boiling eggs is an old cook’s trick that makes them easier to peel.
A link to this experiment is below in the comment box
In order to calculate the final concentration of a dilution, it is important to memorise and remember the following equation:
C1V1/C2V2
Where:
C1 = Initial concentration
V1 = Initial volume
C2 = Final concentration
V2 = Final volume
We are given three of the four, and we are asked to calculate the final concentration in moles, so we may substitute these given values into our equation as follows:
C1V1 = C2V2
(2.00m)(50.0 mL) = (C2)(500mL)
100 = C2(500mL)
C2 = 0.2 m
In the final step, we simply divide 100 by 500 to get our final concentration value.