Answer:
Δ
= -461198.3 J
Explanation:
Gibbs free energy is defined as the energy associated with a given chemical reaction which can be used to do work. Firstly, we need to figure out the chemical equation for the given problem. For the given problem, the chemical equation is:
⇒

⇒

The addition of the two
gives the
of the equation, i.e. -1.18-1.21 = -2.39 V.
Then, using the equation for Δ
, we have:
Δ
= n*F*
= 2*96485*-2.39 = -461198.3 J
Answer:
This solution acts as an efficient buffer
Explanation:
the pH of a buffer solution can be described like this: ![pH=pKa+log\frac{[base]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
[acid]=[acetic acid]=
[base]=[sodium acetate]=
replacing, 
If we add an acid, pH will decrease a little bit and if we add a base, pH wil increase a little bit.
lets supose that we change the rate by increasing [base] to 0.1, then

and now lets supose that we increase [acid] to 0.1 
Big changes in concentration of base or acid doesn´t produce big changes in pH, in that way the mix of sodium acetate with acetic acid is a good buffer solution.
Reaction of calcium with water
Calcium reacts slowly with water. This is in contrast with magnesium, immediately above calcium in the periodic table, which is virtually unreactive with cold water. The reaction forms calcium hydroxide, Ca(OH)2 and hydrogen gas (H2).
Answer:
I'm a bit confused on where the question is. Perhaps re-write it in the comments? I'd love to help but this seems more like an answer than a question xD
Explanation: