Answer:
When n = 1, the reaction is of the First Order
Explanation:
Find attach the solution
Answer:
Explanation:
Depression in freezing point is given by:

= Depression in freezing point
i= vant hoff factor = 1 (for non electrolyte like urea)
= freezing point constant = 
m= molality

Weight of solvent (X)= 950 g = 0.95 kg
Molar mass of non electrolyte (urea) = 60.06 g/mol
Mass of non electrolyte (urea) added = ?


Thus
urea was dissolved.
0.000735 in scientific notation is 7.35 x 10^-4
CO2 and H2O react to form H2CO3 and two bonds are broken each in CO and H2O to form H2CO3.
<h3>What is chemical bonding?</h3>
Chemical bonding refers to the forces of attraction which hold atoms of the same or different elements together in order to form stable compounds or molecules .
Chemical bonding may be either ionic or covalent.
The greater the number of bonds in a compound, the more stable the compound.
During chemical reactions, bonds are broken and new binds are formed.
There are two bonds each in CO2 and H2O.
This, in the reaction between CO2 and H2O react to form H2CO3, , the number of bonds broken in H2O is two and in CO2 is two.
Learn more about chemical bonding at: brainly.com/question/819068
In the complete combustion of 1.60 moles of benzene, C6H6, 12 moles of oxygen, O2, is consumed.
Combustion is defined as the process of burning something. In chemistry, combustion refers to the chemical process between a fuel and an oxidant, usually oxygen to produce heat and light in the form of flame.
In a complete combustion, oxygen is sufficient to react with any hydrocarbons to produce carbon dioxide and water.
Balancing the combustion reaction of benzene, we have:
2C6H6 + 15 O2 = 12CO2 + 6H2O
Based on the balanced combustion reaction above, 2 moles of benzene requires 15 moles of oxygen to have a complete combustion.
If we have 1.60 moles C6H6,
moles O2 = mole ratio x mole of benzene
moles O2 = (15 moles O2/2 moles C6H6) x 1.60 moles C6H6
moles O2 = 12
To learn more about combustion: brainly.com/question/9913173
#SPJ4