The answer is: H₃PO₄.
A phosphoric acid is three protic acid, which means that in water release tree protons.
Phosphoric acid ionizes in three steps in water.
First step: H₃PO₄(aq) ⇄ H₂PO₄⁻(aq) + H⁺(aq).
Second step: H₂PO₄⁻(aq)⇄ HPO₄²⁻(aq) + H⁺(aq).
Third step: HPO₄²⁻(aq) ⇄ PO₄³⁻(aq) + H⁺(aq).
Species that are present: H₃PO₄, H₂PO₄⁻, HPO₄²⁻, PO₄³⁻ and H⁺.
A buffer can be defined as a substance that prevents the pH of a solution from changing by either releasing or absorbing H⁺ in a solution.
Buffer is a solution that can resist pH change upon the addition of an acidic or basic components and it is able to neutralize small amounts of added acid or base, pH of the solution is relatively stable.
Answer:
an estimate of the strength of a bond.
Explanation:
The bond order is given as;
1/2(number of bonding electrons - number of anti bonding electrons)
The bond order tells us about the strength of bond. As the bond order increases, so does the strength of the bond because atoms involved in bonding come closer to each other as the bond length decreases.
Hence, bond order is an index of bond strength. Triple bonds are stronger than double bonds which are stronger than single bonds.
Answer:
https://socratic.org/questions/how-much-heat-is-required-to-convert-5-88-g-of-ice-at-12-0-c-to-water-at-25-0-c-
Explanation:
Answer:742 torr= approximately 0.976 atm
Explanation:
Since we know that one atm= 760 torr, we can compute the following calculation:
(742 torr/1)*(1atm/760torr)=0.976316 atm
Remember sig figs (3) to round it to 0.976 atm
*
=0.976316=0.976 atm
(torr cancels out and we're left with atm)
Hope this helps :)
Explanation:
In general, to balance an equation, here are the things we need to do:
Count the atoms of each element in the reactants and the products.
Use coefficients; place them in front of the compounds as needed.