Answer:
178.35g
Explanation:
Molarity of a solution can be calculated using the formula:
Molarity = number of moles ÷ volume
Based on the information provided in this question, molarity (M) of the solution = 1.50 M, volume = 725 mL = 725/1000 = 0.725L, n = ?
1.50 = n / 0.725
n = 1.50 × 0.725
n = 1.0875mol
Molar mass of Na3PO4
23(3) + 31 + 16(4)
= 69 + 31 + 64
= 164g/mol
Mole = mass ÷ molar mass
1.0875 = mass/164
mass = 178.35g
This is the symbols for protons, neutrons, and electrons
Potassium sulfide, also
known as dipotassium monosulfide, consists of two potassium ions bonded to a
sulfide atom, rendering the chemical formula K2S.<span>Rarely
found in nature due to its high reactivity with water, potassium sulfide is
refined from the more common potassium sulfate (K2SO4) and is used in many
industries</span>
Answer:
Basically, all phosphates except Sodium phosphates, Potassium phosphates and Ammonium phosphates are insoluble in water. That, of course, includes Magnesium phosphate.
Explanation:
Hope this helped!
Answer:
How the incident happened
Any chemicals involved in an incident
Any other hazards present in the lab
Explanation:
Above are the types of information that are necessary to communicate with emergency responders. The emergency responders ask the first question that how the incident happened. After that they ask that is there any harmful chemicals are present in the laboratory or what types of chemicals present in the laboratory. These questions were asked by the emergency responders in order to give the patient a suitable treatment.