67 is the larger one because that is the right answer or it could be 6
For some reason its not letting me send you it so like here is a pic
Answer:
there are 6/8 in 3/4
Step-by-step explanation:
if you want to change the denominator of the fraction, you must find the multiple of it,
(3/4) x 2 is 6/8
so you have 6 x (1/8) thats the same 6/8
3/4 is the minimum simplification, if you want to find the same fraction but with other denominator, you have to multiply 3/4 for any number, to do this you have to multiply the numerator and the denominator
Find where the equation is undefined ( when the denominator is equal to 0.
Since they say x = 5, replace x in the equation see which ones equal o:
5-5 = 0
So we know the denominator has to be (x-5), this now narrows it down to the first two answers.
To find the horizontal asymptote, we need to look at an equation for a rational function: R(x) = ax^n / bx^m, where n is the degree of the numerator and m is the degree of the denominator.
In the equations given neither the numerator or denominators have an exponent ( neither are raised to a power)
so the degrees would be equal.
Since they are equal the horizontal asymptote is the y-intercept, which is given as -2.
This makes the first choice the correct answer.
Answer:
Solutions are 2, -1 + 0.5 sqrt10 i and -1 - 0.5 sqrt10 i
or 2, -1 + 1.58 i and -1 - 1.58i
(where the last 2 are equal to nearest hundredth).
Step-by-step explanation:
The real solution is x = 2:-
x^3 - 8 = 0
x^3 = 8
x = cube root of 8 = 2
Note that a cubic equation must have a total of 3 roots ( real and complex in this case). We can find the 2 complex roots by using the following identity:-
a^3 - b^3 = (a - b)(a^2 + ab + b^2).
Here a = x and b = 2 so we have
(x - 2)(x^2 + 2x + 4) = 0
To find the complex roots we solve x^2 + 2x + 4 = 0:-
Using the quadratic formula x = [-2 +/- sqrt(2^2 - 4*1*4)] / 2
= -1 +/- (sqrt( -10)) / 2
= -1 + 0.5 sqrt10 i and -1 - 0.5 sqrt10 i