The answer is the plague, or the black death
<h3><u>Answer;</u></h3>
Directly proportional
<h3><u>Explanation;</u></h3>
- <em><u>Concentration is one of the factors that determine the rate of a reaction. Reaction rates increases with increase in the concentration of the reactants, which means they are directly proportional.</u></em>
- An increase in the concentration of reactants produces more collisions and thus increasing the rate at which the reaction is taking place. Therefore, <u>Increasing the concentration of a reactant increases the frequency of collisions between reactants and will cause an increase in the rate of reaction.</u>
It can only do that when one of the components of the mixture is a magnetic
material.
When you have that situation, you pass the magnet over the mixture ... shaking
the mixture if it's a dry mixture of powders or pieces ... and the magnetic part of
the mixture moves toward the magnet, while the nonmagnetic parts of the mixture
couldn't care less about the magnet and they just stay where they are.
Your first step should be to analyse the compound. For example, if the compound is carbon, you know it always has a valence of four, so, if it has a formula C2H4 (ethylene) it obviously has a double bond. There are difficulties here because benzene C6H6 can be considered to have 6 1.5 C-C bonds, being aromatic.
A second step is to look at its structure. Double bonds are traditionally shorter than single bonds; triple bonds shorter still. Covalent bonds do have typical lengths, nevertheless you can still have problems.
<span>A third step is to consider reactivity. For example, if you have a C=C double bond, you can add, say, bromine to it Thus C2H4 gives C2H4Br2, and by adding two bromine atoms you know you have one double bond. Again, benzene becomes an awkward molecule, but because of this, you know benzene does not have double bonds in the traditional sense</span>
The nucleus (plural, nuclei) houses the cell's genetic material, or DNA, and is also the site of synthesis for ribosomes, the cellular machines that assemble proteins. Inside the nucleus, chromatin (DNA wrapped around proteins, described further below) is stored in a gel-like substance called nucleoplasm.