Answer : The pH of the solution is, 9.63
Explanation : Given,
The dissociation constant for HCN = 
First we have to calculate the moles of HCN and NaCN.

and,

The balanced chemical reaction is:

Initial moles 0.1116 0.0461 0.08978
At eqm. (0.1116-0.0461) 0 (0.08978+0.0461)
0.0655 0.1359
Now we have to calculate the pH of the solution.
Using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
Now put all the given values in this expression, we get:


Therefore, the pH of the solution is, 9.63
For Iron:

For Oxygen:

These are the two chemical symbols for the two elements found in Iron Oxide.
Answer:
Explanation: The chemical reaction is written by writing down the chemical formulas of the reactants on the left hand side and the chemical formulas of products on the right hand side separated by a right arrow.
This is a single displacement reaction in which a more reactive element displaces the less reactive element from its salt solution. Thus sodium is more reactive than Mg and thus displaces it from
.

The number of atoms of each element must be same on both sides of the reaction so as to follow the law of conservation of mass.
Thus the equation is balanced.
Answer:
This is known as the coefficient factor
Explanation:The balanced equation makes it possible to convert information about one reactant or product to quantitative data about another element.
Answer:
<h3>The answer is 2 g/cm³</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 48 g
volume = 24 cm³
We have

We have the final answer as
<h3>2 g/cm³</h3>
Hope this helps you