Answer:
Momentum is define as the product of the mass and velocity of a body. It is measured in Kgm/s.
Explanation:
Momentum is the product of mass and velocity of an object. When an object or a body of mass 'm' is moving with velocity 'v', then its momentum can be determined as;
momentum (P) = mass × velocity
i.e P = m × v
= mv
It is measured in Kgm/s.
The change in momentum of a body is referred to as its impulse (Ft).
ΔP = m(v - u) = Ft
Where: P is the momentum of the object, m is its mass, v is its final velocity, u is the initial velocity, F is the force and t is the time in which the force acts.
734 is the answer for the chronic blood exchange service of new france
No, because in oxygen depraved rooms, if you drop a feather and a bowling ball at the same height and time, they will fall at the same speed and have the same amount of impact.
Answer:
0.247 μC
Explanation:
As both sphere will be at the same level at wquilibrium, the direction of the electric force will be on the x axis. As you can see in the picture below, the x component of the tension of the string of any of the spheres should be equal to the electric force of repulsion. And its y component will be equal to the weight of one sphere. We can use trigonometry to find the components of the tensions:



The electric force is given by the expression:

In equilibrium, the distance between the spheres will be equal to 2 times the length of the string times sin(50):

And k is the coulomb constan equal to 9 *10^9 N*m^2/C^2. q1 y q2 is the charge of each particle, in this case, they are equal.


O 0.247 μC
The value was determined to be 0.122 m/s. The velocity of a body or object determines its direction of motion. Speed is a scalar quantity in its most fundamental form.
Velocity is essentially a vector quantity. It is the rate of change in distance. The initial speed of the first train, which has a mass of 150,000 kg, is 0.3 m/s. The second train has an initial speed of -0.120 m/s and a mass of 110,000 kg.
Let v represent the post-collision speed of the connected mass.
Utilize the idea of momentum.
The speed of the trains is constant both before and after a collision.
150.000 + 110.000v 45.000 - 13200 = 260.000 v 31800 = 260.000 v v = 0.122 m/s 150000 x 0.3 - 110000 x 0.120
After colliding, they move at a speed of 0.122 m/s towards the direction of the right.
Learn more about velocity here-
brainly.com/question/18084516
#SPJ4