h(t)=(t+3) 2 +5 h, left parenthesis, t, right parenthesis, equals, left parenthesis, t, plus, 3, right parenthesis, squared, plu
lesya692 [45]
Answer:
1
Step-by-step explanation:
If I understand the question right, G(t) = -((t-1)^2) + 5 and we want to solve for the average rate of change over the interval −4 ≤ t ≤ 5.
A function for the rate of change of G(t) is given by G'(t).
G'(t) = d/dt(-((t-1)^2) + 5). We solve this by using the chain rule.
d/dt(-((t-1)^2) + 5) = d/dt(-((t-1)^2)) + d/dt(5) = -2(t-1)*d/dt(t-`1) + 0 = (-2t + 2)*1 = -2t + 2
G'(t) = -2t + 2
This is a linear equation, and the average value of a linear equation f(x) over a range can be found by (f(min) + f(max))/2.
So the average value of G'(t) over −4 ≤ t ≤ 5 is given by ((-2(-4) + 2) + (-2(5) + 2))/2 = ((8 + 2) + (-10 + 2))/2 = (10 - 8)/2 = 2/2 = 1
Click to let others know, how helpful is it
Answer:
B. StartFraction R Y Over R S EndFraction = StartFraction R X Over R T EndFraction = StartFraction X Y Over T S EndFraction
i.e
=
= 
Step-by-step explanation:
Two or more shape or figures are similar when their sides and angles can be compared appropriately.
In the given figure, ΔRXY is within ΔRST. Since the two triangles are similar, then their length of sides can be compared in the form of required ratios.
So that by comparison,
=
= 
Therefore, the correct option to the question is B.
If the last one is supposed to be 7(8+3), it would be equivalent to 56+21