Answer:
Mass of iron oxide: 79.85 g
Explanation:
Given data:
Mass of iron = 112 g
Mass of O₂ = 24 g
Mass of iron oxide formed = ?
Solution:
4Fe + 3O₂ → 2Fe₂O₃
Number of moles of Fe:
Number of moles = mass/ molar mass
Number of moles = 112 g/ 55.85 g/mol
Number of moles = 2 mol
Number of moles of O₂:
Number of moles = mass/ molar mass
Number of moles = 24 g/ 32 g/mol
Number of moles = 0.75 mol
Now we will compare the moles of oxygen and iron with iron oxide.
Fe : Fe₂O₃
4 : 2
2 : 2/4×2 = 1
O₂ : Fe₂O₃
3 : 2
0.75 : 2/3×0.75 = 0.5
The number of moles of iron oxide formed by oxygen are less thus it will be limiting reactant.
Mass of iron oxide:
Mass = number of moles × molar mass
Mass = 0.5 mol × 159.69 g/mol
Mass = 79.85 g
We know,

For given reaction, 

For , 2.41 moles of
:

We know :

Hence, this is the required solution.
Answer:
c solvents dissolve chemicals with the same polarity ( ex. both are polar)
Explanation:
Like dissolves like is one of the central rule that guides the solubility of one substance in another.
- It fully suggests substance having the same nature as in polarity-wise will dissolve one another.
- For example, water is a polar liquid, it will dissolve table salt because it i also polar.
- Water cannot dissolve oil because oil is non-polar.
<u>Answer:</u> The sample of Carbon-14 isotope will take 2377.9 years to decay it to 25 %
<u>Explanation:</u>
The equation used to calculate rate constant from given half life for first order kinetics:

where,
= half life of the reaction = 5730 years
Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = ? yr
= initial amount of the sample = 100 grams
[A] = amount left after decay process = (100 - 25) = 75 grams
Putting values in above equation, we get:

Hence, the sample of Carbon-14 isotope will take 2377.9 years to decay it to 25 %