Molar mass:
O2 = 31.99 g/mol
C8H18 = 144.22 g/mol
<span>2 C8H18(g) + 25 O2(g) = 16 CO2(g) + 18 H2O(g)
2 x 144.22 g --------------- 25 x 31.99 g
10.0 g ----------------------?? ( mass of O2)
10.0 x 25 x 31.99 / 2 x 144.22 =
7997.5 / 288.44 => 27.72 g of O2
hope this helps!
</span>
The rows in the top third - This group consists of elements like Sodium, Magnesium, Potassium and Calcium on the right and Chlorine, Carbon, Nitrogen and Oxygen on the left.
Sodium and Chlorine are components of salt, a very important compound of our blood, essential for transferring electrical signals from the brain to the rest of the body and vice versa. Calcium is the building block of our bones, while Magnesium and potassium ensure proper functioning of our organs.
Cellular Respiration and Photosynthesis. Photosynthesis is the process of when plants use sunlight to make foods from carbon dioxide and water, to later on make oxygen. Cellular respiration is the process through which cells convert sugars into energy.
Answer: The reactivity of group 7 decreases as we move down the group because:
Explanation:
The elements of group 7 that is fluorine to iodine. The halogens are non metals and they react with metals to gain electrons. The metals loose electrons and the non metal gains it.
As we move down the group the atomic radius gets bigger( more electron and more proton) and as a result the outer shells move further away from the nucleus.
There is more distance between the negatively charged electrons and positively charged nucleus.
Therefore the force of attraction between the shells and nucleus is lesser or weaker.
This makes attracting an extra electron from metals very difficult which results in weaker reaction.
Consequently, the reactivity decreases as we move down the group 7
Answer:
2Cu2^+ + 2I^- ----> 2Cu^+ + I2
Explanation:
The reaction performed in the experiment is;
2 Cu(NO3)2 + 4 KI → 2 CuI (s) + 4 KNO3 + I2
The iodide ions reduces Cu^2+ to Cu^+ which is insoluble in water hence the precipitate. This is so because iodine is a good oxidizing agent seeing that it requires one electron to fill its outermost shell. Potassium on the other hand is a good reducing agent since it easily looses its one electron.
The oxidation - reduction equation is as follows;
2Cu2^+ + 2e ----> 2Cu^+ reduction half equation
2I^- ----> I2 + 2e. Oxidation half equation
Balanced redox reaction equation;
2Cu2^+ + 2I^- ----> 2Cu^+ + I2