There are 22 pairs of <span>homologous chromosomes are found in human body cells.</span>
Answer:
The law of definite proportions
Explanation:
The law of definite proportions states that atoms combine in a molecule in a specific molar ratio or specific stoichiometry. For example, it's proved that regardless of the quantity we take, two hydrogen atoms always combine with one oxygen atom to form a water molecule.
Similarly, ionic substances follow the same pattern. Since the net charge of ionic salts should be equal to 0 and each element has a definite number of valence electrons in its shell all the time, the ions combine in a way, so that cations balance the charge of anions.
Essentially, the law of definite proportions is applicable and will be applicable in the future, since we know that each element has a fixed number of valence electrons in its ground state.
<span>Answer: 100 ml
</span>
<span>Explanation:
1) Convert 1.38 g of Fe₂S₃ into number of moles, n
</span>i) Formula: n = mass in grass / molar mass
<span>
ii) molar mass of </span><span>Fe₂S₃ =2 x 55.8 g/mol + 3 x 32.1 g/mol = 207.9 g/mol
</span>
iii) n = 1.38 g / 207.9 g/mol = 0.00664 moles of <span>Fe₂S₃
</span>
<span>2) Use the percent yield to calculate the theoretical amount:
</span>
<span>65% = 0.65 = actual yield/ theoretical yield =>
</span>theoretical yield = actual yield / 0.65 = 0.00664 moles / 0.65 = 0.010 mol <span>Fe₂S₃</span><span>
3) Chemical equation:
</span>
<span> 3 Na₂S(aq) + 2 FeCl₃(aq) → Fe₂S₃(s) + 6 NaCl(aq)
4) Stoichiometrical mole ratios:
</span>
<span>3 mol Na₂S : 2 mol FeCl₃ : 1 mol Fe₂S₃ : 6 mol NaCl
5) Proportionality:
</span>2moles FeCl₃ / 1 mol Fe₂S₃ = x / 0.010 mol Fe₂S₃
<span>
=> x = 0.020 mol FeCl₃
6) convert 0.020 mol to volume
</span>
<span>i) Molarity formula: M = n / V
</span>
<span>ii) V = n / M = 0.020 mol / 0.2 M = 0.1 liter = 100 ml
</span>
Hydrogen bonds.
________________
Given what we know, the tool in question that will help the student collect data regarding the transfer of kinetic energy between water and ice would be a thermometer.
<h3>How does the thermometer measure kinetic energy?</h3>
It does not do so directly. However, kinetic energy in water molecules is reflected in the temperature of the water. When water molecules increase their kinetic energy and move more, they become hotter. Increased or decreased heat is an indirect way to measure the transfer of kinetic energy in water.
Therefore, given that the temperature of the water is a reflection of the transfer of kinetic energy happening, we can confirm that the tool that will help the student collect the data needed is a thermometer.
To learn more about kinetic energy visit:
brainly.com/question/999862?referrer=searchResults