<span>An object at rest stays at rest and an object in </span>motion<span> stays in </span><span>motion. Or Newtons first law of motion.</span>
Not all acid-catalyzed conversions of alcohols to alkyl halides proceed through the formation of carbocations. Primary alcohols and methanol react to form alkyl halides under acidic conditions by an SN2 mechanism.
Not all acid-catalyzed conversions of alcohols to alkyl halides proceed through the formation of carbocations. Primary alcohols and methanol react to form alkyl halides under acidic conditions by an SN2 mechanism.
In these reactions the function of the acid is to produce a protonated alcohol. The halide ion then displaces a molecule of water (a good leaving group) from carbon; this produces an alkyl halide:
Again, acid is required. Although halide ions (particularly iodide and bromide ions) are strong nucleophiles, they are not strong enough to carry out substitution reactions with alcohols themselves. Direct displacement of the hydroxyl group does not occur because the leaving group would have to be a strongly basic hydroxide ion:
We can see now why the reactions of alcohols with hydrogen halides are acid-promoted.
Carbocation rearrangements are extremely common in organic chemistry reactions are are defined as the movement of a carbocation from an unstable state to a more stable state through the use of various structural reorganizational "shifts" within the molecule. Once the carbocation has shifted over to a different carbon, we can say that there is a structural isomer of the initial molecule. However, this phenomenon is not as simple as it sounds.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em>
Answer:

Explanation:
Quantity of heat required by 10 gram of ice initially warm it from -5°C to 0°C:

here;
mass, m = 10 g
specific heat capacity of ice, 
change in temperature, 


Amount of heat required to melt the ice at 0°C:

where, 
we know that no. of moles is = (wt. in gram)
(molecular mass)


Now, the heat required to bring the water to 70°C from 0°C:

specific heat of water, 
change in temperature, 


Therefore the total heat required to warm 10.0 grams of ice at -5.0°C to a temperature of 70.0°C:




The volume occupied by 0.102 mole of the helium gas is 2.69 L
<h3>Data obtained from the question</h3>
The following data were obtained from the question:
- Number of mole (n) = 0.102 moles
- Pressure (P) = 0.95 atm
- Temperature (T) = 305 K
- Gas constant (R) = 0.0821 atm.L/Kmol
- Volume (V) =?
<h3>How to determine the volume </h3>
The volume of the gas can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
Divide both sides by P
V = nRT / P
V = (0.102 × 0.0821 × 305) / 0.95
V = 2.69 L
Thus, the volume of the gas is 2.69 L
Learn more about ideal gas equation:
brainly.com/question/4147359
#SPJ1